phytosterols and lupeol

phytosterols has been researched along with lupeol* in 11 studies

Reviews

1 review(s) available for phytosterols and lupeol

ArticleYear
Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil.
    Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 2010, Volume: 27, Issue:1

    Adulteration of virgin olive oil with less expensive oils such as hazelnut oil is a serious problem for quality control of olive oil. Detection of the presence of hazelnut oil in olive oil at low percentages (<20%) is limited with current official standard methods. In this review, various classes of phytosterols in these two oils are assessed as possible markers to detect adulterated olive oil. The composition of 4-desmethyl- and 4-monomethylsterols is similar in both oils, but the 4,4'-dimethylsterols differ. Lupeol and an unknown (lupane skeleton) compound from 4,4'-dimethylsterols are exclusively present in hazelnut oil and can be used as markers via GC-MS monitoring to detect adulteration at levels as low as 2%. The phytosterol classes need to be separated and enriched by a preparative method prior to analysis by GC or GC/MS; these SPE and TLC methods are also described in this review.

    Topics: Chromatography, Thin Layer; Corylus; Dietary Fats, Unsaturated; Food Contamination; Gas Chromatography-Mass Spectrometry; Olive Oil; Pentacyclic Triterpenes; Phytosterols; Plant Oils; Quality Control; Solid Phase Extraction

2010

Other Studies

10 other study(ies) available for phytosterols and lupeol

ArticleYear
Phytosterols extraction from hickory (Carya cathayensis Sarg.) husk with a green direct citric acid hydrolysis extraction method.
    Food chemistry, 2020, Jun-15, Volume: 315

    This study investigated the direct citric acid hydrolysis extraction method to optimize phytosterols extraction from hickory husk. Single factor experiments followed by a three-level three-factor Box-Behnken experiments were performed. The optimal extraction parameters were determined as: pH of 2.0, liquid-to-solid ratio of 17.12: 1 mL/g, and temperature of 55.81 °C. Practical experiments were carried out in triplicate, and subsequently yielded phytosterols of 912.452 ± 17.452 μg/g DW, in good consistence with the predicted extraction yield of 902.874 μg/g DW. The conductivity of the extract was also found to play effective role under direct citric acid hydrolysis and recorded 36.30 ± 1.08 μs/cm at optimum extraction condition. β-Sitosterol stigmasterol, campsterol, ergosterol and lupeol were detected as main PSs and triterpenoids in hickory husk using UPLC-Triple-TOF/MS. Finally, the comparison between direct hydrolysis extraction and traditional solvent extraction showed that this new method was more effective and eco-friendlier to extract both free and conjugated phytosterols.

    Topics: Carya; Citric Acid; Ergosterol; Hydrogen-Ion Concentration; Hydrolysis; Models, Theoretical; Pentacyclic Triterpenes; Phytosterols; Sitosterols; Stigmasterol; Triterpenes

2020
Regulation of the sperm calcium channel CatSper by endogenous steroids and plant triterpenoids.
    Proceedings of the National Academy of Sciences of the United States of America, 2017, 05-30, Volume: 114, Issue:22

    The calcium channel of sperm (CatSper) is essential for sperm hyperactivated motility and fertility. The steroid hormone progesterone activates CatSper of human sperm via binding to the serine hydrolase ABHD2. However, steroid specificity of ABHD2 has not been evaluated. Here, we explored whether steroid hormones to which human spermatozoa are exposed in the male and female genital tract influence CatSper activation via modulation of ABHD2. The results show that testosterone, estrogen, and hydrocortisone did not alter basal CatSper currents, whereas the neurosteroid pregnenolone sulfate exerted similar effects as progesterone, likely binding to the same site. However, physiological concentrations of testosterone and hydrocortisone inhibited CatSper activation by progesterone. Additionally, testosterone antagonized the effect of pregnenolone sulfate. We have also explored whether steroid-like molecules, such as the plant triterpenoids pristimerin and lupeol, affect sperm fertility. Interestingly, both compounds competed with progesterone and pregnenolone sulfate and significantly reduced CatSper activation by either steroid. Furthermore, pristimerin and lupeol considerably diminished hyperactivation of capacitated spermatozoa. These results indicate that (

    Topics: Calcium Channels; Contraceptive Agents, Male; Estradiol; Female; Fertility; Humans; Hydrocortisone; Hydrolases; In Vitro Techniques; Kinetics; Male; Pentacyclic Triterpenes; Phytosterols; Pregnenolone; Sperm Capacitation; Sperm Motility; Spermatozoa; Steroids; Testosterone; Triterpenes

2017
Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice.
    Nutrients, 2015, Mar-06, Volume: 7, Issue:3

    Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80-467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cholesterol; Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Leukemia; Mass Spectrometry; Mice; Molecular Structure; Oryza; Pentacyclic Triterpenes; Phytosterols; Phytotherapy; Plant Extracts; Seeds; Sitosterols; Stigmasterol; Triterpenes

2015
Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry.
    Lipids, 2013, Volume: 48, Issue:9

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.

    Topics: Cholestadienols; Cholesterol; Chromatography, Liquid; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Oils; Reproducibility of Results; Sitosterols; Stigmasterol; Tandem Mass Spectrometry; Triterpenes

2013
[Study on the chemical constituents of Chloranthus multistachys].
    Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 2012, Volume: 35, Issue:8

    To isolate and identify the chemical constituents of the root of Chloranthus multistachys Pei.. The compounds were isolated by column chromatography, semi-preparative thin layer chromatography and related techniques, their structures were elucidated through spectroscopic analyses.. Nine compounds were isolated and identified as: lupeol (I), cycloeucalenol (II), isofragidin (III), daphnin (IV), umbelliferone (V), palmitic acid (VI), stigmasterol (VII), beta-sitosterol (VIII), beta-daucosterol (IX).. Except VI, all compounds are isolated from this plant for the first time.

    Topics: China; Coumarins; Magnoliopsida; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Roots; Plants, Medicinal; Stigmasterol; Umbelliferones

2012
Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.
    The Journal of biological chemistry, 2010, Sep-24, Volume: 285, Issue:39

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C(30)H(50)O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761-779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores.

    Topics: Base Sequence; Catalysis; Cloning, Molecular; Kalanchoe; Molecular Sequence Data; Oleanolic Acid; Pentacyclic Triterpenes; Phytosterols; Plant Leaves; Recombinant Proteins; Saccharomyces cerevisiae; Triterpenes

2010
Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography.
    Journal of pharmaceutical and biomedical analysis, 2008, Dec-01, Volume: 48, Issue:4

    An accurate and sensitive method, combining soxhlet extraction, solid phase-extraction and capillary gas chromatography is described for the quantitative determination of one triterpene (lupeol) and three sterols (stigmasterol, campesterol and beta-sitosterol) and the detection of another triterpene (alpha-amyrin) from the aerial part of Justicia anselliana. This is the first method allowing the quantification of sterols and triterpenes in this plant. It has been fully validated in order to be able to compare the sterol and triterpene composition of different samples of J. anselliana and therefore help to explain the allelopathic activity due to these compounds. This method showed that the aerial part of J. anselliana contained (292+/-2)mg/kg of lupeol, (206+/-1)mg/kg of stigmasterol, (266+/-2)mg/kg of campesterol and (184+/-9)mg/kg of beta-sitosterol.

    Topics: Acanthaceae; Calibration; Cholesterol; Chromatography, Gas; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Components, Aerial; Reference Standards; Reproducibility of Results; Sensitivity and Specificity; Sitosterols; Solid Phase Extraction; Sterols; Stigmasterol; Triterpenes

2008
Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation.
    Journal of lipid research, 2005, Volume: 46, Issue:11

    Plant stanols and sterols of the 4-desmethyl family (e.g., sitostanol and sitosterol) effectively decrease LDL cholesterol concentrations, whereas 4,4-dimethylsterols (alpha-amyrin and lupeol) do not. Serum carotenoid concentrations, however, are decreased by both plant sterol families. The exact mechanisms underlying these effects are not known, although effects on micellar composition have been suggested. With a liver X receptor (LXR) coactivator peptide recruitment assay, we showed that plant sterols and stanols from the 4-desmethylsterol family activated both LXRalpha and LXRbeta, whereas 4,4-dimethyl plant sterols did not. In fully differentiated Caco-2 cells, the functionality of this effect was shown by the increased expression of ABCA1, one of the known LXR target genes expressed by Caco-2 cells in measurable amounts. The LXR-activating potential of the various plant sterols/stanols correlated positively with ABCA1 mRNA expression. Reductions in serum hydrocarbon carotenoids could be explained by the effects of the 4-desmethyl family and 4,4-dimethylsterols on micellar carotenoid incorporation. Our findings indicate that the decreased intestinal absorption of cholesterol and carotenoids by plant sterols and stanols is caused by two distinct mechanisms.

    Topics: Antioxidants; ATP Binding Cassette Transporter 1; ATP-Binding Cassette Transporters; Caco-2 Cells; Carotenoids; Cholesterol; Cholesterol, LDL; DNA-Binding Proteins; Humans; Hydrocarbons; Intestinal Absorption; Intestines; Liver X Receptors; Micelles; Models, Chemical; Oleanolic Acid; Orphan Nuclear Receptors; Pentacyclic Triterpenes; Peptides; Phytosterols; Plant Extracts; Receptors, Cytoplasmic and Nuclear; Receptors, Steroid; RNA, Messenger; Sitosterols; Sterol Regulatory Element Binding Protein 2; Triterpenes

2005
Lipid composition of mangrove and its relevance to salt tolerance.
    Journal of plant research, 2003, Volume: 116, Issue:1

    Lipid compositions of mangrove trees were studied in relation to the salt-tolerance mechanism. Leaves and roots were obtained from seven mature mangrove trees on Iriomote Island, Okinawa: Bruguiera gymnorrhiza, Rhizophora stylosa, Kandelia candel, Lumnitzera racemosa, Avicennia marina, Pemphis acidula and Sonneratia alba. Lipids of mangrove leaves mainly consisted of 11 lipid classes: polar lipids, unknown (UK) 1-6, sterols, triacyl glycerols, wax ester and sterol ester (UK 3 and 4 were found to be tri-terpenoid alcohol in this study). Of these lipid classes, sterol ester was the main lipid in all species comprising 17.6-33.7% of total lipids. Analysis of the chemical structure found that the sterol esters mainly consisted of fatty acid esters of tri-terpenoid alcohols. One major tri-terpenoid alcohol was identified to be lupeol by interpretation of infrared resonance, nuclear magnetic resonance and mass spectrometry. Because of the unique anatomy of the mangrove root, lipid analyses were made separately for epidermis, cortex and innermost stele, respectively. The concentration of free tri-terpenoid alcohols showed a higher tendency in the outside part than in the inside portion of the roots, suggesting their protective roles. Relevance of lipid composition to salt tolerance was studied with propagules of K. candel and B. gymnorrhiza planted with varied salt concentrations. The proportions of free tri-terpenoids increased with salinity in both leaves and roots of K. candel, and only in roots of B. gymnorrhiza. No salt-dependent changes were noted in the phospholipid and fatty acid compositions in both species. These findings suggested that salt stress specifically modulated the terpenoid concentrations in mangroves.

    Topics: Adaptation, Physiological; Avicennia; Chromatography, Gas; Japan; Lipid Metabolism; Lipids; Mass Spectrometry; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Leaves; Plant Roots; Sodium Chloride; Terpenes; Triterpenes

2003
Aloe vera, hydrocortisone, and sterol influence on wound tensile strength and anti-inflammation.
    Journal of the American Podiatric Medical Association, 1994, Volume: 84, Issue:12

    Aloe vera at doses of 100 and 300 mg/kg daily for 4 days blocked the wound healing suppression of hydrocortisone acetate up to 100% using the wound tensile strength assay. This response was because of the growth factors present in A. vera masking the wound healing inhibitors such as sterols and certain amino acids. The sterols showed good anti-inflammatory activity (-36%) in reducing the croton oil-induced ear swelling. This activity displayed a dose-response relationship.

    Topics: Aloe; Animals; Cholesterol; Croton Oil; Dose-Response Relationship, Drug; Drug Therapy, Combination; Ear; Hydrocortisone; Labyrinthitis; Male; Mice; Mice, Inbred ICR; Pentacyclic Triterpenes; Phytosterols; Plants, Medicinal; Sitosterols; Tensile Strength; Triterpenes; Wound Healing

1994