phytosterols and jasmonic-acid

phytosterols has been researched along with jasmonic-acid* in 7 studies

Other Studies

7 other study(ies) available for phytosterols and jasmonic-acid

ArticleYear
Effect of exogenous jasmonic acid on physiology and steroidal saponin accumulation in Dioscorea zingiberensis.
    Plant physiology and biochemistry : PPB, 2022, Sep-01, Volume: 186

    Dioscorea zingiberensis is a valuable medicinal herb rich in steroidal saponins. To reveal the role of jasmonic acid (JA) on physiology and steroidal saponins accumulation, D. zingiberensis were treated with different concentrations of JA. The antioxidant capacity, photosynthetic parameters, fatty acids and metabolites related to steroidal saponins biosynthesis (phytosterols, diosgenin and steroidal saponins) were examined under JA treatment. The results demonstrated that JA treatment caused a great reduction in MDA, stomatal width, photosynthetic rate and photosynthetic pigment, induced a considerable increase in proline, soluble sugar, soluble protein and antioxidant enzymes (CAT, POD and SOD), and leaded to a significant up-regulation in the expression of genes related to antioxidant system and chlorophyll degradation. Specialized metabolites displayed various changes under different concentrations of JA. The majority of fatty acids exhibited negative responses to JA treatment in leaf and rhizome. In leaf, JA treatment enhanced the accumulation of phytosterols and diosgenin, but decreased the accumulation of steroidal saponins. However, steroidal saponins were mainly accumulated in rhizome and were highly increased by JA treatment. Redundancy analysis illustrated that fatty acids were strongly associated with metabolites related to steroidal saponins. Among all fatty acids, C16:0, C18:1, C18:3, C22:0 and C24:0 contributed most to the variation in metabolites related to steroidal saponin biosynthesis. Overall, JA treatment leaded to an increase in steroidal saponins, but an inhibition of plant growth. Thus, the negative effects of JA application on plant physiology should be carefully assessed before being utilized to increase the production of steroidal saponins in D. zingiberensis.

    Topics: Antioxidants; Cyclopentanes; Dioscorea; Diosgenin; Oxylipins; Phytosterols; Saponins; Steroids

2022
Silicon confers protective effect against ginseng root rot by regulating sugar efflux into apoplast.
    Scientific reports, 2019, 12-03, Volume: 9, Issue:1

    Root rot caused by Ilyonectria mors-panacis is a devastating fungal disease leading to defect in root quality and causes reduced yield during the perennial life cycle of Panax ginseng Meyer. This indicates the imperative need to understand the molecular basis of disease development and also to enhance tolerance against the fungus. With this idea, the protective effect of silicon (supplied as silica nanoparticles) in P. ginseng root rot pathosystem and its molecular mechanism was investigated in the current study. We have tested different concentrations of silicon (Si) to disease-infected ginseng and found that long term analysis (30 dpi) displayed a striking 50% reduction in disease severity index upon the treatment of Si. Expectedly, Si had no direct degradative effect against the pathogen. Instead, in infected roots it resulted in reduced expression of PgSWEET leading to regulated sugar efflux into apoplast and enhanced tolerance against I. mors-panacis. In addition, under diseased condition, both protopanaxadiol (PPD) and protopanaxatriol (PPT) type ginsenoside profile in roots were higher in Si treated plants. This is the first report indicating the protective role of Si in ginseng-root rot pathosystem, thereby uncovering novel features of ginseng mineral physiology and at the same time, enabling its usage to overcome root rot.

    Topics: Cyclopentanes; Metabolic Networks and Pathways; Mevalonic Acid; Nanoparticles; Oxylipins; Panax; Phytosterols; Plant Diseases; Plant Roots; Silicon; Sugars; Triterpenes

2019
Jasmonate responsive transcription factor WsMYC2 regulates the biosynthesis of triterpenoid withanolides and phytosterol via key pathway genes in Withania somnifera (L.) Dunal.
    Plant molecular biology, 2019, Volume: 100, Issue:4-5

    Functional characterization of WsMYC2 via artificial microRNA mediated silencing and transient over-expression displayed significant regulatory role vis-à-vis withanolides and stigmasterol biosyntheses in Withania somnifera. Further, metabolic intensification corroborated well with higher expression levels of putative pathway genes. Additionally, copious expression of WsMYC2 in response to exogenous elicitors resulted in enhanced withanolides production. Withania somnifera, a high value multipurpose medicinal plant, is a rich reservoir of structurally diverse and biologically active triterpenoids known as withanolides. W. somnifera has been extensively pursued vis-à-vis pharmacological and chemical studies. Nonetheless, there exists fragmentary knowledge regarding the metabolic pathway and the regulatory aspects of withanolides biosynthesis. Against this backdrop, a jasmonate-responsive MYC2 transcription factor was identified and functionally characterized from W. somnifera. In planta transient over-expression of WsMYC2 showed significant enhancement of mRNA transcript levels which corroborated well with the enhanced content of withanolides and stigmasterol. Further, a comparative analysis of expression levels of some of the genes of triterpenoid pathway viz. WsCAS, WsCYP85A, WsCYP90B and WsCYP710A in corroboration with the over-expression and silencing of WsMYC2 suggested its positive influence on their regulation. These corroboratory approaches suggest that WsMYC2 has cascading effect on over-expression of multiple pathway genes leading to the increased triterpenoid biosynthesis in infiltered plants. Further, the functional validation of WsMYC2 was carried out by artificial micro-RNA mediated silencing. It resulted in significant reduction of withanolides and stigmasterol levels, indicative of crucial role of WsMYC2 in the regulation of their biosyntheses. Taken together, these non-complementary approaches provided unambiguous understanding of the regulatory role of WsMYC2 in context to withanolides and stigmasterol biosyntheses. Furthermore, the upstream promoter of WsMYC2 presented several cis-regulatory elements primarily related to phytohormone responsiveness. WsMYC2 displayed inducible nature in response to MeJA. It had substantial influence on the higher expression of WsMYC2 which was in consonance with enhanced accumulation of withanolides.

    Topics: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors; Cloning, Molecular; Computer Simulation; Cyclopentanes; Genes, Plant; Metabolic Networks and Pathways; Oxylipins; Phylogeny; Phytosterols; Signal Transduction; Triterpenes; Withania; Withanolides

2019
Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato.
    Biochemical and biophysical research communications, 2017, 07-22, Volume: 489, Issue:2

    In tomato, perception of jasmonates by a receptor complex, which includes the F-box protein CORONATINE INSENSITIVE 1 (COI1), elicits biosynthesis of defensive steroidal glycoalkaloids (SGAs) via a jasmonate-responsive ERF transcription factor, JRE4/GAME9. Although JRE4 is upregulated by jasmonate and induces the expression of many metabolic genes involved in SGA biosynthesis, it is not known whether JRE4 alone is sufficient for increased SGA biosynthesis upon activation of jasmonate signaling. Here, we show that application of methyl jasmonate induces the expression of JRE4 and SGA biosynthesis genes in leaves and hairy roots of wild-type tomato, but not in jasmonic acid insensitive 1 (jai1), a loss-of-function mutant allele of the tomato COI1 gene. Induced overexpression of JRE4 increased the expression of SGA biosynthesis genes in transgenic hairy roots of both wild-type tomato and the jai1 mutant, suggesting that JRE4 is the primary transcription factor that functions downstream of the jasmonate signaling pathway.

    Topics: Alkaloids; Cyclopentanes; Oxylipins; Phytosterols; Plant Proteins; Solanum lycopersicum

2017
Holaphyllamine, a steroid, is able to induce defense responses in Arabidopsis thaliana and increases resistance against bacterial infection.
    Planta, 2017, Volume: 246, Issue:6

    A chemical screen of plant-derived compounds identified holaphyllamine, a steroid, able to trigger defense responses in Arabidopsis thaliana and improve resistance against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. A chemical screen of 1600 plant-derived compounds was conducted and allowed the identification of a steroid able to activate defense responses in A. thaliana at a concentration of 1 µM without altering growth. The identified compound is holaphyllamine (HPA) whose chemical structure is similar to steroid pregnanes of mammals. Our data show that HPA, which is not constitutively present in A. thaliana, is able to trigger the formation of reactive oxygen species, deposition of callose and expression of several pathogenesis-related genes of the salicylic and jasmonic acid pathways. In addition, the results show that pre-treatment of A. thaliana seedlings with HPA before infection with the pathogenic bacterium Pseudomonas syringae pv tomato DC3000 results in a significant reduction of symptoms (i.e., reduction of bacterial colonies). Using A. thaliana mutants, we have found that the activation of defense responses by HPA does not depend on BRI1/BAK1 receptor kinases. Finally, a structure/function study reveals that the minimal structure required for activity is a 5-pregnen-20-one steroid with an equatorial nucleophilic group in C-3. Together, these findings demonstrate that HPA can activate defense responses that lead to improved resistance against bacterial infection in A. thaliana.

    Topics: Arabidopsis; Arabidopsis Proteins; Cells, Cultured; Cyclopentanes; Disease Resistance; Gene Expression Regulation, Plant; Glucans; Mutation; Nicotiana; Oxylipins; Phytosterols; Plant Diseases; Plant Growth Regulators; Plant Leaves; Pseudomonas syringae; Reactive Oxygen Species; Respiratory Burst; Salicylic Acid; Seedlings; Small Molecule Libraries

2017
Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato.
    Plant & cell physiology, 2016, Volume: 57, Issue:5

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway. Transactivation and DNA-protein binding assays demonstrate that JRE4 activates the transcription of SGA biosynthetic genes by binding to GCC box-like elements in their promoters. These JRE-binding elements occur at significantly higher frequencies in proximal promoter regions of the genes regulated by JRE genes, supporting the conclusion that JREs mediate transcriptional co-ordination of a series of metabolic genes involved in SGA biosynthesis.

    Topics: Alkaloids; Cyclopentanes; DNA-Binding Proteins; Ethylenes; Gene Expression Regulation, Plant; Oxylipins; Phytosterols; Plant Growth Regulators; Plant Proteins; Plants, Genetically Modified; Promoter Regions, Genetic; Solanum lycopersicum; Species Specificity; Transcription Factors; Transcriptional Activation

2016
Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells.
    Plant molecular biology, 2009, Volume: 70, Issue:4

    Auxin is essential for the formation of the vascular system. We previously reported that a polar auxin transport inhibitor, 1-N-naphthylphthalamic acid (NPA) decreased intracellular auxin levels and prevented tracheary element (TE) differentiation from isolated Zinnia mesophyll cells, but that additional auxin, 1-naphthaleneacetic acid (NAA) overcame this inhibition. To understand the role of auxin in gene regulation during TE differentiation, we performed microarray analysis of genes expressed in NPA-treated cells and NPA-NAA-treated cells. The systematic gene expression analysis revealed that NAA promoted the expression of genes related to auxin signaling and transcription factors that are known to be key regulators of differentiation of procambial and xylem precursor cells. NAA also promoted the expression of genes related to biosynthesis and metabolism of other plant hormones, such as cytokinin, gibberellin and brassinosteroid. Interestingly, detailed analysis showed that NAA rapidly induces the expression of auxin carrier gene homologues. It suggested a positive feedback loop for auxin-regulating vascular differentiation. Based on these results, we discuss the auxin function in early processes of transdifferentiation into TEs.

    Topics: Abscisic Acid; Asteraceae; Brassinosteroids; Carrier Proteins; Cell Transdifferentiation; Cells, Cultured; Cholestanols; Cluster Analysis; Cyclopentanes; Cytokinins; Ethylenes; Gene Expression Profiling; Gene Expression Regulation, Plant; Gibberellins; Indoleacetic Acids; Molecular Sequence Data; Naphthaleneacetic Acids; Oligonucleotide Array Sequence Analysis; Oxidoreductases; Oxylipins; Phylogeny; Phytosterols; Plant Growth Regulators; Plant Leaves; Plant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Steroids, Heterocyclic; Xylem

2009