phytosterols has been researched along with fucosterol* in 15 studies
1 review(s) available for phytosterols and fucosterol
Article | Year |
---|---|
Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology.
Marine algae are rich in some unique biologically active secondary metabolites having diverse pharmacological benefits. Of these, sterols comprise a group of functional lipid compounds that have attracted much attention to natural product scientists.. This review was aimed to update information on the health effects of algae-derived phytosterols and their molecular interactions in various aspects of human health and diseases and to address some future perspectives that may open up a new dimension of pharmacological potentials of algal sterols.. A literature-based search was carried out to retrieve published research information on the potential health effects of algal phytosterols with their pharmacological mechanisms from accessible online databases, such as Pubmed, Google Scholar, Web of Science, and Scopus, using the key search terms of 'marine algae sterol' and 'health potentials such as antioxidant or anti-inflammatory or anti-Alzheimer's or anti-obesity or cholesterol homeostasis or hepatoprotective, antiproliferative, etc.'. Phytosterols of marine algae, particularly fucosterol, have been investigated for a plethora of health benefits, including anti-diabetes, anti-obesity, anti-Alzheimer's, antiaging, anticancer, and hepatoprotection, among many others, which are attributed to their antioxidant, anti-inflammatory, immunomodulatory and cholesterol-lowering properties, indicating their potentiality as therapeutic leads. These sterols interact with enzymes and various other proteins that are actively participating in different cellular pathways, including antioxidant defense system, apoptosis and cell survival, metabolism, and homeostasis.. In this review, we briefly overview the chemistry, pharmacokinetics, and distribution of algal sterols, and provide critical insights into their potential health effects and the underlying pharmacological mechanisms, beyond the well-known cholesterol-lowering paradigm. Topics: Anti-Inflammatory Agents; Antioxidants; Aquatic Organisms; Cholesterol; Humans; Phaeophyceae; Phytosterols; Rhodophyta; Seaweed; Stigmasterol; Tissue Distribution | 2020 |
14 other study(ies) available for phytosterols and fucosterol
Article | Year |
---|---|
Characterization of seven sterols in five different types of cattle feedstuffs.
This paper provides a method for the quantification of sterols in different types of calf feedstuffs based on soy, sunflower, hay, calf feed and a mixture of all of them. The free fraction and the total sterolic fraction, after saponification and acidic hydrolysis of the samples, are extracted by solvent and the sterols are identified/quantified by reversed phase HPLC coupled to tandem mass spectrometry by atmospheric pressure chemical ionization. After the recovery evaluation, the method is validated in terms of linearity (coefficient of determination R Topics: Animal Feed; Animals; Atmospheric Pressure; Cattle; Cholesterol; Chromatography, High Pressure Liquid; Ergosterol; Glycine max; Helianthus; Phytosterols; Sitosterols; Stigmasterol; Tandem Mass Spectrometry | 2021 |
Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes.
Several feeding trials with Atlantic salmon fed naturally high phytosterol concentrations due to dietary rapeseed oil inclusion have shown changes in lipid metabolism and increased hepatic lipid storage in the fish. An in vitro trial with Atlantic salmon hepatocytes was, therefore, performed to study the possible direct effects of phytosterols on lipid storage and metabolism. The isolated hepatocytes were exposed to seven different sterol treatments and gene expression, as well as lipid accumulation by Oil Red O dyeing, was assessed. Fucosterol, a sterol found in many algae species, had an effect on the size of individual lipid droplets, leading to smaller lipid droplets than in the control without added sterols. A sterol extract from soybean/rapeseed led to an increase in the percentage of hepatocytes with visible lipid droplets at 20× magnification, while hepatocytes of both the sterol extract-treated groups and fucosterol-treated groups had a larger proportion of their area covered with lipids compared to control cells. Brassicasterol, a sterol characteristic of rapeseed oil, was the only sterol treatment leading to a change in gene expression, affecting the expression of the nuclear receptors, peroxisome proliferator-activated receptor gamma (pparg) and retinoid X receptor (rxr). The current study thus shows that phytosterols can have direct, although subtle, effects on both hepatic lipid storage and gene expression of Atlantic salmon in vitro. Topics: Animals; Cholestadienols; Hepatocytes; Lipid Metabolism; Lipids; Phytosterols; Salmon; Stigmasterol | 2018 |
Influence of cultivation sites on sterol, nitrate, total phenolic contents and antioxidant activity in endive and stem chicory edible products.
Chicories produce a wide range of vegetables with important nutritional value. We determined the variation of sterol, total polyphenol, nitrate contents and antioxidant capacity (SC, TPC, NC, AC) in endive leaves and stem-chicory novel vegetables, cultivated in two Italian regions. Within a given area, the SC was similar in smooth- and curly leafed endives (106.3-176.0 mg/kg FW); sitosterol and stigmasterol were major fractions (45-56 versus 38-43%). The stem SC was independent of landrace (101.5-118.6 mg/kg FW); sitosterol prevailed on stigmasterol and fucosterol (73-76 versus 12-14% versus 8-9%); the latter reached 15.7 mg/kg FW, conferring value as potential antidiabetes food. The planting site affected the AC and TPC of endives (893.1-1571.4 μmTE/100 g FW, 30.8-76.1 GAE100/g FW) and chicory stems (729.8-1152.5 μmTE/100 g FW; 56.2-124.4 GAE100/g FW), while the NC was recurrently below dangerous thresholds. PCA showed that environment was the major cause of variation, though it modestly affected these parameters. Topics: Antioxidants; Asteraceae; Cichorium intybus; Crop Production; Crops, Agricultural; Food Contamination; Functional Food; Humans; Italy; Nitrates; Nutritive Value; Oxygen Radical Absorbance Capacity; Phenols; Phytosterols; Plant Leaves; Plant Stems; Principal Component Analysis; Sitosterols; Spatio-Temporal Analysis; Species Specificity; Stigmasterol | 2017 |
Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice.
Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80-467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract. Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cholesterol; Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Leukemia; Mass Spectrometry; Mice; Molecular Structure; Oryza; Pentacyclic Triterpenes; Phytosterols; Phytotherapy; Plant Extracts; Seeds; Sitosterols; Stigmasterol; Triterpenes | 2015 |
Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.
New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols. Topics: Brassicaceae; Cholestadienols; Cholesterol; Fatty Acids, Omega-3; Gas Chromatography-Mass Spectrometry; Phospholipids; Phytosterols; Plant Oils; Plants, Genetically Modified; Seeds; Sitosterols; Stigmasterol; Triglycerides | 2014 |
Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed.
The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed. Topics: Biological Transport; Carbon; Cholesterol; Cloning, Molecular; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hydroxymethylglutaryl CoA Reductases; Methyltransferases; Nicotiana; Phytosterols; Plant Leaves; Plants, Genetically Modified; Seeds; Sitosterols; Stigmasterol; Triterpenes | 2002 |
The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis.
We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols demonstrated that dim accumulates 24-methylenecholesterol but is deficient in campesterol, an early precursor of brassinolide. In addition, we show that dim is deficient in brassinosteroids as well. Feeding experiments using deuterium-labeled 24-methylenecholesterol and 24-methyldesmosterol confirmed that DIM/DWF1 is involved in both the isomerization and reduction of the Delta24(28) bond. This conversion is not required in cholesterol biosynthesis in animals but is a key step in the biosynthesis of plant sterols. Transient expression of a green fluorescent protein-DIM/DWF1 fusion protein and biochemical experiments showed that DIM/DWF1 is an integral membrane protein that most probably is associated with the endoplasmic reticulum. Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Base Sequence; Brassinosteroids; Cholestanols; Cholesterol; DNA, Plant; Gene Expression Regulation, Plant; Genes, Plant; Membrane Proteins; Molecular Sequence Data; Mutation; Phenotype; Phytosterols; Plant Growth Regulators; Plant Proteins; RNA, Messenger; RNA, Plant; Sequence Homology, Amino Acid; Steroids; Steroids, Heterocyclic; Stigmasterol | 1998 |
[Sterols from Gynostemma pentafillum].
The sterol fraction of Gynostemma pentafillum contains beta-sito sterol and isofucosterol. The identification of these compounds has been carried out through NMR and MS data. Topics: Phytosterols; Plants; Sitosterols; Stigmasterol | 1989 |
Inhibition of cholesterol absorption in rats by plant sterols.
The extent and site(s) of inhibition of cholesterol absorption by plant sterols, sitosterol and fucosterol, were studied in rats. The intragastric administration of a single emulsified lipid meal containing 25 mg [3H]cholesterol and 25 mg of either sitosterol or fucosterol inhibited the lymphatic absorption of cholesterol by 57% and 41%, respectively, in 24 hr. Less than 2% of each plant sterol was absorbed in the 24-hr period. In contrast, neither plant sterol (50 microM) inhibited cholesterol absorption when co-administered with equimolar amounts of cholesterol in phospholipid-bile salt micelles nor was either absorbed from the micellar solution. A series of in vitro studies was conducted to identify the site(s) of plant sterol inhibition of cholesterol absorption and to account for the difference in inhibitory effectiveness of sitosterol and fucosterol. A comparison of the micellar solubility of each sterol alone and in equimolar binary mixtures (to 2.0 mM) revealed that the solubility of individual sterols decreased in the following order: cholesterol, fucosterol, sitosterol, and that in binary mixtures cholesterol solubility was decreased by sitosterol and, to a lesser extent, by fucosterol relative to its solubility alone. A comparison between micellar-solubilized cholesterol and either sitosterol or fucosterol for binding to isolated brush border membranes, intestinal mucin, or for esterification by either cholesterol esterase or acyl coenzyme A:cholesterol acyltransferase revealed moderate to no competition. The data suggest that plant sterols displace cholesterol from bile salt (taurocholate) micelles and that sitosterol is more effective than fucosterol in this capacity. Topics: Absorption; Animals; Anticholesteremic Agents; Binding, Competitive; Cholesterol; Esterification; Gastric Mucins; In Vitro Techniques; Intestinal Absorption; Lymphatic System; Male; Micelles; Microvilli; Mucous Membrane; Phytosterols; Rats; Rats, Inbred Strains; Sitosterols; Solubility; Sterol Esterase; Stigmasterol | 1988 |
Fucosterol decreases angiotensin converting enzyme levels with reduction of glucocorticoid receptors in endothelial cells.
The modulation of angiotensin converting enzyme (ACE) levels was studied using fucosterol, one of phytosterols, in cultured bovine carotid endothelial cells. Addition of fucosterol to the culture medium resulted in the decrease of ACE activity of endothelial cells; however, fucosterol did not directly inhibit ACE activity. Dexamethasone elevated the levels of ACE in normal cells, but this effect was not seen in the fucosterol-treated cells. Receptor assays showed that the amount of glucocorticoid receptors in fucosterol-treated cells decreased to an undetectable level. These results indicate that fucosterol lowers the ACE levels on the endothelial cells by inhibiting the synthesis of glucocorticoid receptors involved in the regulation of ACE levels. Topics: Cells, Cultured; Dexamethasone; Endothelium; Peptidyl-Dipeptidase A; Phytosterols; Receptors, Glucocorticoid; Sitosterols; Stigmasterol | 1986 |
Visible fibrinolysis by endothelial cells: effect of vitamins and sterols.
We have succeeded in corroborating the enhancing effect of vitamin A, vitamin C, sitosterol and fucosterol on the fibrinolytic activity of endothelial cells. The assay system consisted of an in situ dissolution of a fibrin layer coated onto a culture dish, over which endothelial cells were grown in a culture medium containing 10% serum. The dissolution was enhanced by the addition of these vitamins and phytosterols to the culture medium. Topics: Animals; Ascorbic Acid; Cattle; Cells, Cultured; Endothelium; Fibrin; Fibrinolysis; Phytosterols; Sitosterols; Stigmasterol; Vitamin A | 1986 |
Sterols from Equisetum arvense.
The sterol fraction of Equisetum arvense L. contains, essentially, the following sterols: beta-sitosterol (60.0%), campesterol (32.9%), isofucosterol (5.9%) and cholesterol (trace amounts). The identification of the compounds has been carried out through NMR and MS, while the corresponding percentage have been desumed from the GLC and HPLC data. Topics: Cholesterol; Chromatography, Gas; Chromatography, High Pressure Liquid; Magnetic Resonance Spectroscopy; Phytosterols; Plants, Medicinal; Sitosterols; Stigmasterol | 1984 |
Successive study on the production of plasminogen activator in cultured endothelial cells by phytosterol.
In a previous study(1), it was demonstrated that one of phytosterols, sitosterol, has an ability to increase the intracellular and extracellular activities of plasminogen activator in cultured endothelial cells and that other steroids including cholesterol, 5-androsten-3 beta-ol, stigmasterol, 20(R)-propyl-5-pregnen-3 beta-ol and 20(R)-heptyl-5-pregnen-3 beta-ol have no ability. Once-stimulated cells went back to normal states by removal of sitosterol. The similar lines of research for plasminogen activators were reported by several groups which were cited in a previous paper(l). In the present communication, we found that fucosterol, which is present mainly in brown algae, Phaeophyta, enhances the production of plasminogen activator in endothelial cells, as well as sitosterol. A similar enhancement was not observed for other steroids and sex hormones including androsterone, testosterone, estrone and estradiol. Synthesis of plasminogen activator induced with fucosterol or sitosterol was inhibited by protein synthesis inhibitor, cycloheximide. The plasminogen activators produced in cells were, in the present study, classified into urokinase-type activators with molecular weights of 31,000 and 55,000 and tissue-type ones with molecular weights of 81,000 and 130,000, which were identified with respective antibodies. The synthesis of each type of plasminogen activator in endothelial cells was stimulated by sitosterol or by fucosterol. Topics: Animals; Carotid Arteries; Cattle; Cells, Cultured; Endothelium; Molecular Weight; Phytosterols; Plasminogen Activators; Sitosterols; Stigmasterol | 1984 |
Metabolism in porifera. VII. Conversion of [7,7-3H2]-fucosterol into calysterol by the sponge Calyx niceaensis.
The sponge Calyx niceaensis metabolizes administered [7,7--(3)H2]-fucosterol to produce labelled calysterol, the principal sterol component of the sponge, possessing the unique feature of a cyclopropene ring bridging C23,24. Topics: Animals; Cyclopropanes; Phytosterols; Porifera; Sterols; Stigmasterol | 1977 |