phytosterols has been researched along with fenpropimorph* in 4 studies
4 other study(ies) available for phytosterols and fenpropimorph
Article | Year |
---|---|
Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots.
Sterols composition of transformed carrot roots incubated in presence of increasing concentrations of fenpropimorph (0.02; 0.2; 2mgl(-1)) and fenhexamid (0.02; 0.2; 2; 20mgl(-1)), colonized or not by Glomus intraradices was determined. In mycorrhizal roots treated with fenpropimorph, normal Delta(5)-sterols were replaced by unusual compounds such as 9beta,19-cyclopropylsterols (24-methylpollinastanol), Delta(8,14)-sterols (ergosta-8,14-dienol, stigmasta-8,14-dienol), Delta(8)-sterols (Delta(8) sitosterol) and Delta(7)-sterols (ergosta-7,22-dienol). After application of fenpropimorph, a drastic reduction of the mycorrhizal root growth, root colonization and extraradical fungal development was observed. Application of fenhexamid did not modify sterol profiles and the total colonization of roots. But the arbuscule frequency of the fungal partner was significantly affected. Comparison of the effects caused by the tested fungicides indicates that the usual phytosterols may be involved in symbiosis development. Indeed, observed modifications of root sterols composition could explain the high fenpropimorph toxicity to the AM symbiosis. However, the absence of sterolic modifications in the roots treated with fenhexamid could account for its more limited impact on mycorrhization. Topics: Amides; Daucus carota; Fungal Proteins; Fungicides, Industrial; Gene Expression Regulation, Fungal; Morpholines; Mycorrhizae; Phytosterols; Plant Roots | 2008 |
Sterols regulate development and gene expression in Arabidopsis.
Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways. Topics: Arabidopsis; Brassinosteroids; Cell Division; Cholestanols; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Morpholines; Mutation; Phytosterols; Plant Growth Regulators; Steroids, Heterocyclic | 2003 |
Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacylglycerols.
Like most higher plants, leek seedlings (Allium porrum L.) contain a mixture of Delta(5)-sterols in which sitosterol largely predominates. As previously reported (Plant Physiol., 117 (1998) 931), these compounds, which are synthesized at the endoplasmic reticulum level, were shown to be actively transported to the plasma membrane via a membrane-mediated process, together with phosphatidylserine (PS). In the present work, leek seedlings were allowed to germinate for 7 days in the presence of fenpropimorph, a sterol biosynthesis inhibitor. Such a treatment was found to trigger an almost complete replacement of the usual sterols by 9beta,19-cyclopropylsterols (mainly cycloeucalenol and 29-norcycloartenol). Extensive lipid analyses and labeling experiments with sodium [14C]acetate were performed to examine potential changes in the content and the rate of synthesis of the other lipid molecular species. The results indicate that the inhibition of the sterol pathway was accompanied by a severe decrease in PS and glucosylceramide synthesis as well as by a redirection of fatty acids toward the storage triacylglycerol pathway. Triacyglycerols are shown to accumulate concomitantly with a significant increase in intracellular lipid droplets in both aerial parts and roots of leek seedlings. Taken together, the present data emphasize that a coordinated regulation of the biosynthetic pathways of sterols and some specific lipid molecular species could take place during plant membrane biogenesis. Topics: Allium; Cell Membrane; Enzyme Inhibitors; Fatty Acids; Glucosylceramides; Lipid Metabolism; Lipids; Morpholines; Phosphatidylserines; Phytosterols; Plant Roots; Seeds; Sterols; Triglycerides; Triterpenes | 2002 |
Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi.
The sterols and sterol precursors of two amoebae of the genus Naegleria, Naegleria lovaniensis and Naegleria gruberi were investigated. Cycloartenol, the sterol precursor in photosynthetic organisms, is present in both amoebae. In N. lovaniesis, it is accompanied by lanosterol and parkeol, as well as by the 24,25-dihydro derivatives of these triterpenes. One of the most striking features of these amoebae is the accumulation of 4 alpha-methylsterols which are present in similar amounts as those of 4,4-desmethylsterols (3-5 mg/g, dry weight). 4 alpha-Methylergosta-7,22-dienol was identified as a new compound. Ergosterol was the major 4,4-desmethylsterol, accompanied by small amounts of C27 and other C28 sterols. Treatment of N. lovaniensis with fenpropimorph modified the sterol pattern of this amoeba and inhibited its growth. This fungicide, known to inhibit steps of sterol biosynthesis in fungi and plants, induced the disappearance of 4 alpha-methyl-delta 7-sterols and the appearance of the unusual delta 6,8,22-ergostatrienol as in A. polyphaga. These results might be explained by a partial inhibition of the delta 8----delta 7 isomerase, the small amounts of delta 7-sterols formed being converted into ergosterol which is still present in fenpropimorph-exposed cells. De novo sterol biosynthesis in N. lovaniensis was shown by incorporation of [1-14C]acetate into sterols and sterol precursors, especially cycloartenol. Lanosterol and parkeol were not significantly labelled. Furthermore, [3-3H]squalene epoxide was efficiently cyclized by a cell-free system of this amoeba into cycloartenol, and again no significant radioactivity was detected in lanosterol and parkeol. This shows that cycloartenol, the sterol precursor in plants and algae, is also the sterol precursor in Naegleria species, and that these amoebae, like A. polyphaga, are related by some biosynthetic pathways to photosynthetic phyla. Lanosterol, the sterol precursor in non-photosynthetic phyla (animal and fungi) and parkeol are more likely dead-ends of this biosynthetic pathway. The peculiar phylogenetic position of these protozoa was further emphasized by the action of indole acetic acid and other auxine-like compounds on their growth. Indeed amoebic growth was enhanced in the presence of these higher plant growth hormones. The differences in the sterol composition of the protozoa we have hitherto examined is related to their sensitivity toward polyene macrolide antibiotics.(ABSTRACT TRUNCATED AT 4 Topics: Amoeba; Animals; Chemical Phenomena; Chemistry; Fungicides, Industrial; Morpholines; Photosynthesis; Phylogeny; Phytosterols; Sterols; Triterpenes | 1987 |