phytosterols has been researched along with farnesyl-pyrophosphate* in 5 studies
5 other study(ies) available for phytosterols and farnesyl-pyrophosphate
Article | Year |
---|---|
Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli.
Cycloartenol is biosynthetically the first sterol skeleton, which is metabolized to phytosterols such as β-sitosterol and stigmasterol. β-Amyrin is the most commonly occurring aglycone skeleton for oleanane-type saponins such as glycyrrhizin and saikosaponins. It has been regarded that these cyclic triterpenes are unable to be produced in Escherichia coli, while no reports are available on their production with E. coli. Here, we describe a method to synthesize triterpene skeletons from higher plants, including cycloartenol and β-amyrin. We introduced into E. coli the biosynthetic pathway genes from farnesyl diphosphate (FPP) to cycloartenol or β-amyrin, which contained Arabidopsis (Arabidopsis thaliana)-derived squalene synthase (AtSQS) and squalene epoxidase (AtSQE) genes in addition to the Arabidopsis cycloartenol synthase (AtCAS1) gene, or the β-amyrin synthase (EtAS) gene of the petroleum plant Euphorbia tirucalli, along with the isopentenyl diphosphate isomerase (HpIDI) gene from a green algae Haematococcus pluvialis. The order of genes, HpIDI, AtSQS, AtSQE, driven by transcriptional read-through from a tac promoter to an rrnB terminator, was crucial for their functional expression in E. coli to produce cycloartenol or β-amyrin. The co-expression of a bacterial NADPH-regenerating gene (zwf or gdh) as well as bacterial redox partner protein genes (camA and camB, or NsRED and NsFER) was found to increase the amounts of these triterpenes several fold. The present study could open up opportunities not only to carry out functional analysis of a higher-plant-derived oxidosqualene cyclase (OSC) gene in E. coli but also to produce functional triterpenes that originate from medicinal or herbal plants. Topics: Arabidopsis; Escherichia coli; Farnesyl-Diphosphate Farnesyltransferase; Intramolecular Transferases; Metabolic Engineering; Metabolic Networks and Pathways; Oleanolic Acid; Phytosterols; Polyisoprenyl Phosphates; Sesquiterpenes; Squalene Monooxygenase; Triterpenes | 2017 |
Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis.
The reaction catalyzed by squalene synthase (EC.2.5.1.21) that converts two molecules of farnesyl pyrophosphate to squalene represents a crucial branch point of the isoprenoid pathway in diverting carbon flux towards the biosynthesis of sterols. In the present study two soybean squalene synthase genes, GmSQS1 and GmSQS2, were identified in the soybean genome and functionally characterized for their roles in sterol biosynthesis. Both genes encode a deduced protein of 413 amino acids. Complementation assays showed that the two genes were able to convert yeast sterol auxotrophy erg9 mutant to sterol prototrophy. Expression of GmSQS1 and GmSQS2 was ubiquitous in roots, stem, leaves, flower and young seeds of soybean, however GmSQS1 transcript was preferential in roots while GmSQS2 transcript was more in leaves. Their expression was lower in response to dehydration treatments suggesting they might be negative regulators of water stress adaptation. Transgenic Arabidopsis plants overexpressing GmSQS1 driven by either constitutive or seed-specific promoters showed increases in the major end product sterols: campesterol, sitosterol and stigmasterol, which resulted in up to 50% increase in total sterol content in the seeds. The increase in the end product sterols by GmSQS1 overexpression was at the level achievable by previously reported overexpression of individual or combination of other key enzymes in the sterol pathway. Together the data demonstrate that soybean SQS genes play an important role in diverting carbon flux to the biosynthesis of the end product sterols in the seeds. Topics: Adaptation, Physiological; Amino Acid Sequence; Carbon; Cholesterol; Droughts; Farnesyl-Diphosphate Farnesyltransferase; Gene Expression Regulation, Plant; Genes, Plant; Glycine max; Molecular Sequence Data; Mutation; Phytosterols; Plant Leaves; Plant Proteins; Polyisoprenyl Phosphates; Promoter Regions, Genetic; Seeds; Sesquiterpenes; Sitosterols; Squalene; Stigmasterol; Stress, Physiological; Water | 2013 |
Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L.
Euphorbia tirucalli L., which is also known as a petroleum plant, produces a large amount of phytosterols and triterpenes. During their biosynthesis, squalene synthase converts two molecules of the hydrophilic substrate farnesyl diphosphate into a hydrophobic product, squalene. An E. tirucalli cDNA clone of a putative squalene synthase gene (EtSS) was isolated by RT-PCR followed by 5'- and 3'-RACE. The restriction fragment polymorphisms revealed by Southern blot analysis suggest that EtSS is a single copy gene. The glycine at the 287th residue from the N-terminal end of domain C has replaced alanine, which is conserved among all the other SS sequences deposited in the Genbank database. The N-terminal 380 residues of the hydrophilic sequence was expressed as a peptide-tagged protein in E. coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. GC-MS analysis showed that squalene was detected in the in vitro reaction mixture. E. tirucalli transgenic callus lines, in which EtSS was overexpressed, accumulated increased amounts of phytosterols as compared with that of wild type callus. RT-PCR analysis of wild type E. tirucalli plants revealed that the EtSS transcript accumulated in almost equal amounts in the stems and the leaves with a stalk, while a lower amount was detected in the roots. In situ hybridization analysis revealed that prominent antisense-probe signal was detected in the cambia within bundle sheathes. These results indicate that EtSS functions prominently in cambia, which are located adjacent to conductive tubes, and that this gene plays important roles in phytosterol accumulation in petroleum plants. Topics: Amino Acid Sequence; Cloning, Molecular; DNA, Complementary; Euphorbia; Farnesyl-Diphosphate Farnesyltransferase; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; In Situ Hybridization; Molecular Sequence Data; NADP; Phytosterols; Plant Proteins; Plants, Genetically Modified; Polyisoprenyl Phosphates; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Sesquiterpenes; Squalene | 2009 |
Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit.
alpha-Zingiberene synthase (ZIS), a sesquiterpene synthase gene that was isolated from lemon basil (Ocimum basilicum L.), encodes an enzyme that catalyzes the formation of alpha-zingiberene, and other sesquiterpenes, from farnesyl diphosphate. Transgenic tomato fruits overexpressing ZIS under the control of the fruit ripening-specific tomato polygalacturonase promoter (PG) accumulated high levels of alpha-zingiberene (224-1000 ng g(-1) fresh weight) and other sesquiterpenes, such as alpha-bergamotene, 7-epi-sesquithujene, beta-bisabolene and beta-curcumene, whereas no sesquiterpenes were detected in non-transformed control fruits. The ZIS-transgenic fruits also produced monoterpenes, such as alpha-thujene, alpha-pinene, beta-phellandrene and gamma-terpinene (1-22 ng g(-1) fresh weight), which were either not detected or were found only in minute concentrations in control fruits. Recombinant ZIS overexpressed in Escherichia coli catalyzed the formation of these monoterpenes from geranyl diphosphate. As the ZIS protein apparently lacks a transit peptide, and is localized in the cytosol, the production of monoterpenes in the transgenic tomatoes suggests that a pool of geranyl diphosphate is available in the cytosol. The phenotype of the ZIS-transgenic tomatoes was the same as that for wild-type tomatoes, with regard to plant vigor and shape, but transgenic plants exhibited a small decrease in lycopene content. This study thus showed that the synthesis of both mono- and sesquiterpenes can be enhanced by the ectopic expression of a single transgene in tomato fruit, and it further demonstrated the interconnection between the pools of terpenoid precursors in the plastids and the cytosol. Topics: Alkyl and Aryl Transferases; Carotenoids; Cloning, Molecular; Diphosphates; Diterpenes; Escherichia coli; Fruit; Gas Chromatography-Mass Spectrometry; Genetic Vectors; Monocyclic Sesquiterpenes; Monoterpenes; Ocimum basilicum; Oils, Volatile; Phytosterols; Plants, Genetically Modified; Polyisoprenyl Phosphates; RNA, Plant; Sesquiterpenes; Solanum lycopersicum; Transformation, Genetic | 2008 |
Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme a reductase.
To get some insight into the regulatory mechanisms controlling the sterol branch of the mevalonate pathway, tobacco (Nicotiana tabacum cv Bright Yellow-2) cell suspensions were treated with squalestatin-1 and terbinafine, two specific inhibitors of squalene synthase (SQS) and squalene epoxidase, respectively. These two enzymes catalyze the first two steps involved in sterol biosynthesis. In highly dividing cells, SQS was actively expressed concomitantly with 3-hydroxy-3-methylglutaryl coenzyme A reductase and both sterol methyltransferases. At nanomolar concentrations, squalestatin was found to inhibit efficiently sterol biosynthesis as attested by the rapid decrease in SQS activity and [(14)C]radioactivity from acetate incorporated into sterols. A parallel dose-dependent accumulation of farnesol, the dephosphorylated form of the SQS substrate, was observed without affecting farnesyl diphosphate synthase steady-state mRNA levels. Treatment of tobacco cells with terbinafine is also shown to inhibit sterol synthesis. In addition, this inhibitor induced an impressive accumulation of squalene and a dose-dependent stimulation of the triacylglycerol content and synthesis, suggesting the occurrence of regulatory relationships between sterol and triacylglycerol biosynthetic pathways. We demonstrate that squalene was stored in cytosolic lipid particles, but could be redirected toward sterol synthesis if required. Inhibition of either SQS or squalene epoxidase was found to trigger a severalfold increase in enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, giving first evidence for a positive feedback regulation of this key enzyme in response to a selective depletion of endogenous sterols. At the same time, no compensatory responses mediated by SQS were observed, in sharp contrast to the situation in mammalian cells. Topics: Bridged Bicyclo Compounds, Heterocyclic; Carbon Radioisotopes; Cell Line; Enzyme Inhibitors; Farnesyl-Diphosphate Farnesyltransferase; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hydroxymethylglutaryl CoA Reductases; Methyltransferases; Naphthalenes; Nicotiana; Oxygenases; Phosphoric Monoester Hydrolases; Phytosterols; Polyisoprenyl Phosphates; Sesquiterpenes; Squalene; Squalene Monooxygenase; Terbinafine; Tricarboxylic Acids; Triglycerides; Triterpenes; Up-Regulation | 2002 |