phytosterols and campest-5-en-3-one

phytosterols has been researched along with campest-5-en-3-one* in 2 studies

Other Studies

2 other study(ies) available for phytosterols and campest-5-en-3-one

ArticleYear
Campest-5-en-3-one, an oxidized derivative of campesterol, activates PPARalpha, promotes energy consumption and reduces visceral fat deposition in rats.
    Biochimica et biophysica acta, 2006, Volume: 1760, Issue:5

    Dietary campest-5-en-3-one (campestenone), an oxidized derivative of campesterol, significantly reduced visceral fat weight and the concentration of triacylglycerol in serum and liver of rats. Dietary campestenone dramatically increased the activities and the mRNA expressions of mitochondrial and peroxisomal enzymes involved in beta-oxidation in the liver. Campestenone activated human peroxisome proliferator-activated receptor (PPAR) alpha as determined using the novel GAL4 ligand-binding domain chimera assay system with coactivator coexpression. In contrast, dietary campestenone reduced the activities and the mRNA expressions of enzymes involved in fatty acid synthesis, except for the malic enzyme. Dietary campestenone decreased the sterol regulatory element binding protein-1 (SREBP-1) mRNA level. Energy expenditure was significantly higher in the feeding of campestenone in rats. Dietary campestenone reduced hepatic cholesterol concentration and increased fecal excretion of neutral steroids originated from cholesterol. Lymphatic absorption of cholesterol was reduced by the coadministration of campestenone in rats cannulated in the thoracic duct. These observations suggest a possibility that campestenone has an ability to prevent coronary heart disease by improving obesity and abnormality of lipid metabolism.

    Topics: Animals; Body Weight; Cholesterol; Energy Metabolism; Fatty Acids; Feces; Intra-Abdominal Fat; Liver; Male; Oxidation-Reduction; Oxidoreductases; Phytosterols; PPAR alpha; Rats; Rats, Inbred Strains; RNA, Messenger; Steroids; Sterol Regulatory Element Binding Protein 1

2006
Synthesis of 6-oxy functionalized campest-4-en-3-ones: efficient hydroperoxidation at C-6 of campest-5-en-3-one with molecular oxygen and silica gel.
    Steroids, 2000, Volume: 65, Issue:8

    As a reference compound library for the investigation of biosynthesis of brassinosteroids, focused on a pathway from campesterol (1) to campestanol (2), 6-oxy functionalized campest-4-en-3-ones as well as campest-5-en-3-one (7) and campestane-3,6-dione were prepared from 1. Oxidation of 1 with pyridinium chlorochromate buffered by calcium carbonate gave 5-en-3-one (7) in 76% yield. Treatment of 7 with silica gel under an oxygen atmosphere in ethyl ether at room temperature produced efficient hydroperoxidation at the C-6 position to give 6alpha-hydroperoxycampest-4-en-3-one and 6beta-hydroperoxycampest-4-en-3-one in 34% and 49% yields, respectively. These compounds were converted to 6alpha-hydroxycampest-4-en-3-one and 6beta-hydroxycampest-4-en-3-one by reduction with triethyl phosphite. This provided the first example of the practical use of hydroperoxidation at C-6 of a Delta(5(6))-unsaturated 3-oxo-steroid with molecular oxygen and silica gel. On the other hand, oxidation of 1 with pyridinium chlorochromate in the absence of calcium carbonate gave campest-4-ene-3,6-dione in 64% yield. This compound was then converted in a highly stereoselective manner to campestane-3,6-dione with A/B trans ring junction by reduction with titanium (III) chloride in 85% yield.

    Topics: Biochemistry; Cholesterol; Molecular Structure; Oxygen; Phytosterols; Silica Gel; Silicon Dioxide

2000
chemdatabank.com