phytosterols has been researched along with beta-amyrin* in 7 studies
7 other study(ies) available for phytosterols and beta-amyrin
Article | Year |
---|---|
Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli.
Cycloartenol is biosynthetically the first sterol skeleton, which is metabolized to phytosterols such as β-sitosterol and stigmasterol. β-Amyrin is the most commonly occurring aglycone skeleton for oleanane-type saponins such as glycyrrhizin and saikosaponins. It has been regarded that these cyclic triterpenes are unable to be produced in Escherichia coli, while no reports are available on their production with E. coli. Here, we describe a method to synthesize triterpene skeletons from higher plants, including cycloartenol and β-amyrin. We introduced into E. coli the biosynthetic pathway genes from farnesyl diphosphate (FPP) to cycloartenol or β-amyrin, which contained Arabidopsis (Arabidopsis thaliana)-derived squalene synthase (AtSQS) and squalene epoxidase (AtSQE) genes in addition to the Arabidopsis cycloartenol synthase (AtCAS1) gene, or the β-amyrin synthase (EtAS) gene of the petroleum plant Euphorbia tirucalli, along with the isopentenyl diphosphate isomerase (HpIDI) gene from a green algae Haematococcus pluvialis. The order of genes, HpIDI, AtSQS, AtSQE, driven by transcriptional read-through from a tac promoter to an rrnB terminator, was crucial for their functional expression in E. coli to produce cycloartenol or β-amyrin. The co-expression of a bacterial NADPH-regenerating gene (zwf or gdh) as well as bacterial redox partner protein genes (camA and camB, or NsRED and NsFER) was found to increase the amounts of these triterpenes several fold. The present study could open up opportunities not only to carry out functional analysis of a higher-plant-derived oxidosqualene cyclase (OSC) gene in E. coli but also to produce functional triterpenes that originate from medicinal or herbal plants. Topics: Arabidopsis; Escherichia coli; Farnesyl-Diphosphate Farnesyltransferase; Intramolecular Transferases; Metabolic Engineering; Metabolic Networks and Pathways; Oleanolic Acid; Phytosterols; Polyisoprenyl Phosphates; Sesquiterpenes; Squalene Monooxygenase; Triterpenes | 2017 |
β-Amyrin oxidation by oat CYP51H10 expressed heterologously in yeast cells: the first example of CYP51-dependent metabolism other than the 14-demethylation of sterol precursors.
CYP51 has been recognized as a unique CYP family that consists of one isolated molecular species, a sterol 14-demethylase essential for sterol biosynthesis. However, another CYP51 gene classified as the CYP51H subfamily has been identified in higher plants, in addition to a sterol 14-demethylase gene, CYP51G1. To shed light on the function of this "second CYP51", oat CYP51H10 was introduced into the β-amyrin-producing yeast cells, and the effect of the expressed CYP51H10 on β-amyrin metabolism in the host cells was examined. In the CYP51H10-introduced cells, β-amyrin was converted to a metabolite with 12,13-epoxy and one additional hydroxyl group. Since the 12,13-epoxy group introduced into β-amyrin ring is an essential structure of avenacin A-1, a triterpene glycoside produced in oat from β-amyrin, the present findings indicate the contribution of CYP51H10 to avenacin A-1 biosynthesis from β-amyrin. This is the first study showing a second function of the CYP51 family. Topics: Avena; Genes, Plant; Oleanolic Acid; Phytosterols; Saponins; Sterol 14-Demethylase; Yeasts | 2012 |
Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland.
Triterpenoid compounds found in free and ester forms in extracts of entire fruits and leaves and in fruit and leaf cuticular waxes of bilberry (Vaccinium myrtillus L.) collected in Finland and Poland were identified and quantitated by gas chromatography-mass spectrometry coupled to a flame ionization detector (GC-MS/FID). The main bilberry triterpenoid profile consisted of α- and β-amyrin, α- and β-amyrenone, campesterol, cholesterol, citrostadienol (in berries), cycloartanol, erythrodiol, lupeol, 24-methylenecycloartanol, sitosterol, sitostanol, stigmasterol, stigmasta-3,5-dien-7-one, uvaol, oleanolic and ursolic aldehydes, and oleanolic, ursolic, 2α-hydroxyoleanolic, and 2α-hydroxyursolic acids. Friedelin and D:A-friedooleanan-3β-ol were found only in Finnish plants, whereas D:C-friedours-7-en-3β-ol and taraxasterol were found only in Polish plants. To our knowledge, this is the first thorough description of triterpenoid compounds in this species. The presented results revealed that the triterpenoid profile of bilberry varied considerably between different organs of the plant, regardless of the plant origin, as well as between plant samples obtained from the two geographical locations. Topics: Anthocyanins; Cholesterol; Finland; Fruit; Gas Chromatography-Mass Spectrometry; Molecular Structure; Oleanolic Acid; Phytosterols; Plant Extracts; Plant Leaves; Poland; Sitosterols; Triterpenes; Vaccinium myrtillus | 2012 |
Identification of biologically active triterpenes and sterols present in hexane extracts from Miconia species using high-resolution gas chromatography.
In this work we describe the identification of the biologically active triterpenes and sterols present in the hexane extracts of six species of Miconia using gas chromatography. The main compounds present in these extracts are beta-amyrin, alpha-amyrin, and beta-sitosterol. The technique employed herein is shown to be a valuable and rapid tool for determining biologically active triterpenes and sterols present in non-polar extracts. Topics: Chromatography, Gas; Hexanes; Melastomataceae; Oleanolic Acid; Phytosterols; Plant Components, Aerial; Plant Extracts; Sitosterols; Triterpenes | 2006 |
Plant sterols and stanols: effects on mixed micellar composition and LXR (target gene) activation.
Plant stanols and sterols of the 4-desmethyl family (e.g., sitostanol and sitosterol) effectively decrease LDL cholesterol concentrations, whereas 4,4-dimethylsterols (alpha-amyrin and lupeol) do not. Serum carotenoid concentrations, however, are decreased by both plant sterol families. The exact mechanisms underlying these effects are not known, although effects on micellar composition have been suggested. With a liver X receptor (LXR) coactivator peptide recruitment assay, we showed that plant sterols and stanols from the 4-desmethylsterol family activated both LXRalpha and LXRbeta, whereas 4,4-dimethyl plant sterols did not. In fully differentiated Caco-2 cells, the functionality of this effect was shown by the increased expression of ABCA1, one of the known LXR target genes expressed by Caco-2 cells in measurable amounts. The LXR-activating potential of the various plant sterols/stanols correlated positively with ABCA1 mRNA expression. Reductions in serum hydrocarbon carotenoids could be explained by the effects of the 4-desmethyl family and 4,4-dimethylsterols on micellar carotenoid incorporation. Our findings indicate that the decreased intestinal absorption of cholesterol and carotenoids by plant sterols and stanols is caused by two distinct mechanisms. Topics: Antioxidants; ATP Binding Cassette Transporter 1; ATP-Binding Cassette Transporters; Caco-2 Cells; Carotenoids; Cholesterol; Cholesterol, LDL; DNA-Binding Proteins; Humans; Hydrocarbons; Intestinal Absorption; Intestines; Liver X Receptors; Micelles; Models, Chemical; Oleanolic Acid; Orphan Nuclear Receptors; Pentacyclic Triterpenes; Peptides; Phytosterols; Plant Extracts; Receptors, Cytoplasmic and Nuclear; Receptors, Steroid; RNA, Messenger; Sitosterols; Sterol Regulatory Element Binding Protein 2; Triterpenes | 2005 |
A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula.
The saponins of the model legume Medicago truncatula are glycosides of at least five different triterpene aglycones: soyasapogenol B, soyasapogenol E, medicagenic acid, hederagenin and bayogenin. These aglycones are most likely derived from beta-amyrin, a product of the cyclization of 2,3-oxidosqualene. Mining M. truncatula EST data sets led to the identification of sequences putatively encoding three early enzymes of triterpene aglycone formation: squalene synthase (SS), squalene epoxidase (SE), and beta-amyrin synthase (beta-AS). SS was functionally characterized by expression in Escherichia coli, two forms of SE by complementation of the yeast erg1 mutant, and beta-AS by expression in yeast. Beta-amyrin was the sole product of the cyclization of squalene epoxide by the recombinant M. truncatulabeta-AS, as judged by GC-MS and NMR. Transcripts encoding beta-AS, SS and one form of SE were strongly and co-ordinately induced, associated with accumulation of triterpenes, upon exposure of M. truncatula cell suspension cultures to methyl jasmonate. Sterol composition remained unaffected by jasmonate treatment. Molecular verification of induction of the triterpene pathway in a cell culture system provides a new tool for saponin pathway gene discovery by DNA array-based approaches. Topics: Acetates; Amino Acid Sequence; Carbohydrate Sequence; Cells, Cultured; Cyclopentanes; Escherichia coli; Expressed Sequence Tags; Farnesyl-Diphosphate Farnesyltransferase; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Genomics; Intramolecular Transferases; Medicago; Molecular Sequence Data; Oleanolic Acid; Oxygenases; Oxylipins; Phylogeny; Phytosterols; Saponins; Signal Transduction; Squalene Monooxygenase; Triterpenes | 2002 |
Phytosterol content in American ginseng seed oil.
North American ginseng (Panax quinquefolium L.) oil was saponifed and the unsaponifiable matter trimethylsilylated. The phytosterol fraction of hexane-extracted, air-dried seed was quantified and identified by GC and GC-MS. Phytosterol contents (milligrams per 100 g of oil) were as follows: squalene (514-569), oxidosqualene (8.97-48.2), campesterol (9.96-12.4), stigmasterol (93.2-113), clerosterol (1.91-2.14), beta-sitosterol (153-186), beta-amyrin (11.7-19.5), delta(5)-avenasterol (12.4-20.5), delta(5,24(25))-stigmasterol (3.70-.76), lupeol (14.4-15.2), delta(7)-sitosterol (12.5-14.6), delta(7)-avenasterol (4.11-8.09), 24-methylenecycloartanol (1.94-4.76), and citrostadienol (2.50-3.81). Seed stratification lowered the phytosterol levels. Oven-drying gave mixed results, and phytosterols varied slightly between the 1999 and 2000 harvests. Topics: Cholesterol; Chromatography, Gas; Gas Chromatography-Mass Spectrometry; Oleanolic Acid; Panax; Phytosterols; Plant Oils; Seeds; Sitosterols; Squalene; Stigmasterol; Triterpenes | 2002 |