phytoestrogens has been researched along with taxifolin* in 2 studies
2 other study(ies) available for phytoestrogens and taxifolin
Article | Year |
---|---|
Selected Phytoestrogens Distinguish Roles of ERα Transactivation and Ligand Binding for Anti-Inflammatory Activity.
Estrogen receptor α (ERα) is a ligand-activated transcriptional activator that is also involved vascular inflammation and atherosclerosis. Whether different ligands may affect this activity has not been explored. We screened a panel of phytoestrogens for their role in ERα binding and transcriptional transcription, and correlated the findings to anti-inflammatory activities in vascular endothelial cells stably expressing either a wild-type or mutant form of ERα deficient in its membrane association. Taxifolin and silymarin were "high binders" for ERα ligand binding; quercetin and curcumin were "high activators" for ERα transactivation. Using these phytoestrogens as functional probes, we found, in endothelial cells expressing wild-type ERα, the ERα high activator, but not the ERα high binder, promoted ERα nuclear translocation, estrogen response element (ERE) reporter activity, and the downstream gene expression. In endothelial cells expressing membrane association-deficient mutant ERα, the ERα nuclear translocation was significantly enhanced by taxifolin and silymarin, which still failed to activate ERα. Inflammation response was examined using the systemic or vascular inflammation inducers lipopolysaccharide or oxidized low-density lipoprotein. In both cases, only the ERα high activator inhibited nuclear translocation of nuclear factor κB, JNK, and p38, and the production of inflammatory cytokines IL-1β and TNFα. We confirm a threshold nuclear accumulation of ERα is necessary for its transactivation. The anti-inflammatory activity of phytoestrogens is highly dependent on ERα transactivation, less so on the ligand binding, and independent of its membrane association. A pre-examination of phytoestrogens for their mode of ERα interaction could facilitate their development as better targeted receptor modifiers. Topics: Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Atherosclerosis; Cell Line; Curcumin; Endothelial Cells; Estrogen Receptor alpha; Humans; Inflammation; Interleukin-1beta; Ligands; Lipopolysaccharides; Lipoproteins, LDL; MAP Kinase Kinase 4; Molecular Docking Simulation; Mutation; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phytoestrogens; Protein Transport; Quercetin; Response Elements; Signal Transduction; Silymarin; Tumor Necrosis Factor-alpha | 2018 |
Determination and pharmacokinetic study of taxifolin in rabbit plasma by high-performance liquid chromatography.
Taxifolin has been widely used in the treatment of cerebral infarction and sequelae, cerebral thrombus, coronary heart disease and angina pectoris. A reliable sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) method with UV detection for the pharmacokinetic study of taxifolin in rabbit plasma after enzymatic hydrolysis was developed and validated for the first time. Taxifolin, with biochanin A as the internal standard, was extracted from plasma samples by liquid/liquid extraction after hydrolysis with beta-glucuronidase and sulfatase. Chromatographic separation was conducted on a Luna C18 column (4.6 mm x 150 mm, 5 microm particle size) and pre-column (2.0 mm, the same sorbent). Two-step linear gradient elution with acetonitrile and 0.03% water solution of trifluoroacetic acid as mobile phase at a flow rate of 1.0 ml/min was used. The UV detector is set at 290 nm. The elution time for taxifolin and biochanin A was approximately 7.9 and 18.3 min, respectively. The calibration curve of taxifolin was linear (r > 0.9997) over the range of 0.03-5.0 microg/ml in rabbit plasma. The limit of detection (LOD) and limit of quantification (LOQ) for taxifolin were 0.03 and 0.11 microg/ml, respectively. The present method was successfully applied for the estimation of the pharmacokinetic parameters of taxifolin following intravenous and oral administration of lipid solution to rabbits. The absolute bioavailability of taxifolin after oral administration of lipid solution was 36%. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents, Non-Steroidal; Biological Availability; Calibration; Chromatography, High Pressure Liquid; Female; Genistein; Hydrolysis; Injections, Intravenous; Larix; Lipids; Male; Phytoestrogens; Plant Extracts; Quercetin; Rabbits | 2009 |