phytoestrogens and prunetin

phytoestrogens has been researched along with prunetin* in 3 studies

Other Studies

3 other study(ies) available for phytoestrogens and prunetin

ArticleYear
The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male Drosophila melanogaster.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2016, Volume: 30, Issue:2

    Dietary isoflavones, a group of secondary plant compounds that exhibit phytoestrogenic properties, are primarily found in soy. Prunetin, a representative isoflavone, was recently found to affect cell signaling in cultured cells; however, in vivo effects remain elusive. In this study, the model organism Drosophila melanogaster was used to investigate the effects of prunetin in vivo with respect to lifespan, locomotion, body composition, metabolism, and gut health. Adult flies were chronically administered a prunetin-supplemented diet. Prunetin improved median survival by 3 d, and climbing activity increased by 54% in males. In comparison with the females, male flies exhibited lower climbing activity, which was reversed by prunetin intake. Furthermore, prunetin-fed males exhibited increased expression of the longevity gene Sirtuin 1 (Sir2) (22%), as well as elevated AMPK activation (51%) and triglyceride levels (29%), whereas glucose levels decreased (36%). As females are long-lived compared with their male counterparts and exhibit higher triglyceride levels, prunetin apparently "feminizes" male flies via its estrogenicity. We conclude that the lifespan-prolonging effects of prunetin in the male fruit fly depend on changes in AMPK-regulated energy homeostasis via male "feminization." Collectively, we identified prunetin as a plant bioactive compound capable of improving health status and survival in male D. melanogaster.

    Topics: AMP-Activated Protein Kinases; Animals; Drosophila melanogaster; Drosophila Proteins; Energy Metabolism; Enzyme Activation; Female; Glucose; Histone Deacetylases; Isoflavones; Locomotion; Male; Phytoestrogens; Sex Characteristics; Sirtuins; Triglycerides

2016
Cell-transforming activity and mutagenicity of 5 phytoestrogens in cultured mammalian cells.
    International journal of cancer, 2003, Jun-20, Volume: 105, Issue:3

    For the simultaneous assessment of in vitro carcinogenicity and mutagenicity of phytoestrogens, the abilities of 5 phytoestrogens, daidzein, genistein, biochanin A, prunetin, and coumestrol, to induce cell transformation and genetic effects were examined using the Syrian hamster embryo (SHE) cell model. Cellular growth was inhibited by all phytoestrogens in a concentration-related manner. The growth inhibitory effect of the compounds was ranked: genistein, prunetin > coumestrol > biochanin A > daidzein, which did not correspond to their apoptosis-inducing abilities. Morphological transformation in SHE cells was elicited by all phytoestrogens, except, prunetin. The transforming activities were ranked as follows: genistein > coumestrol > daidzein > biochanin A. Somatic mutations in SHE cells at the Na(+)/K(+) ATPase and hprt loci were induced only by genistein, coumestrol, or daidzein. Chromosome aberrations were induced by genistein or coumestrol, and aneuploidy in the near diploid range was occurred by genistein or biochanin A. Genistein, biochanin A or daidzein induced DNA adduct formation in SHE cells with the abilities: genistein > biochanin A > daidzein. Prunetin was negative for any of these genetic endpoints. Our results provide evidence that genistein, coumestrol, daidzein and biochanin A induce cell transformation in SHE cells and that the transforming activities of these phytoestrogens correspond to at least 2 of the mutagenic effects by each phytoestrogen, i.e., gene mutations, chromosome aberrations, aneuploidy or DNA adduct formation, suggesting the possible involvement of mutagenicity in the initiation of phytoestrogen-induced carcinogenesis.

    Topics: Animals; Anticarcinogenic Agents; Apoptosis; Cell Line; Cell Transformation, Neoplastic; Chromosome Aberrations; Coumestrol; Cricetinae; DNA Adducts; Dose-Response Relationship, Drug; Embryo, Mammalian; Estrogens, Non-Steroidal; Genistein; Isoflavones; Mesocricetus; Metaphase; Models, Chemical; Mutagens; Mutation; Phytoestrogens; Plant Preparations; Time Factors

2003
Identification of phytoestrogens in bovine milk using liquid chromatography/electrospray tandem mass spectrometry.
    Rapid communications in mass spectrometry : RCM, 2003, Volume: 17, Issue:12

    In an international context of promoting scientific research on food safety, the interest in molecules having potential hormonal disrupting effects is growing. While industrial endocrine disruptors (phthalates, alkylphenols, PCBs, etc.) have been studied for several years, natural compounds like phytoestrogens remain less investigated. Accordingly, a research project was initiated with its main objectives to develop efficient analytical methods for a wide range of phytoestrogens in various food matrices, and to evaluate their occurrence in food products. Electrospray ionization with tandem mass spectrometric (MS/MS) analysis of isoflavones (genistein, daidzein, equol, formononetin, biochanin A), lignans (enterolactone, enterodiol), and coumestans (coumestrol) was investigated. This study revealed the formation of a large number of fragment ions in both positive and negative modes, corresponding to specific cleavages of the hydroxyl, carbonyl, and/or methoxy groups, and to Retro-Diels-Alder reactions. An LC/ESI-MS/MS method was developed consistent with the 2002/657/EC European decision criteria. An extraction and clean-up method was developed for milk samples. The identification limit for the proposed method appears to be under 1 ng/mL. The developed methodology was applied to various milk samples, and the occurrence of isoflavones (particularly equol) was demonstrated in the concentration range 1-30 ng/mL. The efficiency of the proposed analytical method permitted evaluation of a new and promising approach to a global risk assessment of natural estrogenic active substances including phytoestrogens and their metabolites.

    Topics: 4-Butyrolactone; Animals; Cattle; Chromans; Chromatography, Liquid; Coumestrol; Equol; Estrogens, Non-Steroidal; Genistein; Ions; Isoflavones; Lignans; Milk; Molecular Structure; Phytoestrogens; Plant Preparations; Spectrometry, Mass, Electrospray Ionization

2003