phytoestrogens and fructooligosaccharide

phytoestrogens has been researched along with fructooligosaccharide* in 2 studies

Other Studies

2 other study(ies) available for phytoestrogens and fructooligosaccharide

ArticleYear
Yacon-based product improves intestinal hypertrophy and modulates the production of glucagon-like peptide-1 in postmenopausal experimental model.
    Life sciences, 2022, Feb-15, Volume: 291

    The progressive decline in estrogen level puts postmenopausal women at a higher risk of developing cardiometabolic diseases. Thus, we evaluated the potential beneficial effects of yacon-based product (YBP) on glycemic profile and intestinal health of postmenopausal rats.. Eighty Wistar rats were randomized into 4 ovariectomized (OVX) groups or 4 celiotomized groups treated with a standard diet (SD) or diet supplemented with YBP at 6% of fructooligosaccharide (FOS)/inulin.. The continued consumption of YBP at 6% of FOS/inulin did not generate liver damage and gastrointestinal disorders. Rats fed with YBP displayed higher food consumption, but this did not increase the body weight gain, abdominal circumference and body fat percentual of OVX rats. Furthermore, we also found that the FOS/inulin fermentation present in the YBP resulted in cecum, ileum and colon crypts hypertrophy and increased the lactic acid levels in the cecal content. We observed an increase of glucagon-like peptide-1 (GLP-1) immunoreactive cells and there was no change in the glucose and insulin plasma levels of YBP-fed OVX rats.. Our findings indicated that YBP when consumed previously and after the menopausal period has important effects on the morphology and function of intestinal mucous of rats and has potential to modulate indirectly the glycemic and insulinemic profiles, weight gain and body fat percentual in the hypoestrogenic period through metabolites produced in the fermentation process.

    Topics: Adipose Tissue; Animals; Blood Glucose; Cecum; Dietary Supplements; Female; Glucagon-Like Peptide 1; Hypertrophy; Ileum; Intestinal Mucosa; Intestines; Inulin; Oligosaccharides; Phytoestrogens; Plant Extracts; Postmenopause; Prebiotics; Rats; Rats, Wistar; Weight Gain

2022
Supplementation of difructose anhydride III enhanced elevation of plasma equol concentrations and lowered plasma total cholesterol in isoflavone-fed rats.
    The British journal of nutrition, 2006, Volume: 96, Issue:3

    Equol, a derivative of daidzein produced by enterobacteria, has greater activity as a phyto-oestrogen compared with daidzein. Difructose anhydride III (DFAIII) is a newly manufactured non-digestible disaccharide with unique fermentation properties. The present study evaluated the prebiotic effects of DFAIII on equol production and on plasma cholesterol concentrations related to the changes in equol production. We compared plasma equol concentrations at 10.00 and 18.00 hours and faecal isoflavone excretion in three groups of seven rats (male Wistar-ST strain, 6 weeks old) fed a basal diet or a DFAIII or fructooligosaccharide (15 g/kg diet) diet containing 1 g soya isoflavones/kg diet for 20 d. Equol concentrations in the DFAIII group were higher than in the control and fructooligosaccharides groups, especially in the later phase of the light period (18.00 hours) throughout the experiment. Daizein and genistein concentrations did not change between the diet groups. The faecal ratios of equol:daidzein were very high in all groups, but the ratios were higher in the DFAIII group than the control and fructooligosaccharide groups on day 3, and this tendency continued throughout the experiment. On day 20, the plasma total cholesterol concentration was lowest in the DFAIII group. Additionally, the cholesterol concentrations were inversely correlated to plasma equol concentration in all the rats. In conclusion, DFAIII efficiently enhanced plasma equol concentrations, which may be associated with an increase in equol production and a decrease in equol degradation by enterobacteria. Higher plasma equol concentrations may contribute to the hypocholesterolaemic effect of DFAIII feeding.

    Topics: Animals; Body Weight; Cecum; Cholesterol; Diet; Dietary Supplements; Disaccharides; Equol; Feces; Genistein; Isoflavones; Male; Oligosaccharides; Phytoestrogens; Rats; Rats, Wistar

2006