phytoestrogens and afimoxifene

phytoestrogens has been researched along with afimoxifene* in 11 studies

Other Studies

11 other study(ies) available for phytoestrogens and afimoxifene

ArticleYear
Isoflavone content and estrogenic activity of different batches of red clover (Trifolium pratense L.) extracts: an in vitro study in MCF-7 cells.
    Fitoterapia, 2014, Volume: 94

    The estrogenicity of different batches of red clover (Trifolium pratense L., Fabaceae; RCL) extracts and its relationship with the isoflavone content were assessed by measuring MCF-7 cell proliferation by flow cytometry and propidium iodide staining. RCL extracts were compared to estradiol (E2) and to the main RCL isoflavones biochanin A, daidzein, genistein and formononetin. Isoflavone content in the extracts was assayed by HPLC. E2 and isoflavones increased MCF-7 proliferation in a concentration-dependent fashion, with the following potency order: E2>>>genistein>biochanin A=daidzein>formononetin. Extracts increased MCF-7 proliferation with different potencies, which in four out of five extracts correlated with the ratios 5,7-dihydroxyisoflavones/7-hydroxyisoflavones. The efficacy of all extracts increased with decreasing genistein contents. A solution containing the main isoflavones at the average concentration of RCL extracts increased MCF-7 proliferation with higher potency and steeper concentration-response curve. The effects of E2, of RCL extracts and of the isoflavone solution were inhibited by the estrogen receptor antagonist 4-hydroxytamoxifen. Flow cytometric analysis of MCF-7 proliferation is a suitable bioassay for the estrogenicity of RCL extracts, thus expanding the characterization of individual batches beyond assessment of chemical composition and contributing to improved standardization of quality and activity.

    Topics: Cell Proliferation; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Estrogen Antagonists; Estrogens; Female; Flow Cytometry; Humans; Inhibitory Concentration 50; Isoflavones; MCF-7 Cells; Molecular Structure; Phytoestrogens; Plant Extracts; Tamoxifen; Trifolium

2014
Structural insights into Resveratrol's antagonist and partial agonist actions on estrogen receptor alpha.
    BMC structural biology, 2013, Oct-25, Volume: 13

    Resveratrol, a naturally occurring stilbene, has been categorized as a phytoestrogen due to its ability to compete with natural estrogens for binding to estrogen receptor alpha (ERα) and modulate the biological responses exerted by the receptor. Biological effects of resveratrol (RES) on estrogen receptor alpha (ERα) remain highly controversial, since both estrogenic and anti-estrogenic properties were observed.. Here, we provide insight into the structural basis of the agonist/antagonist effects of RES on ERα ligand binding domain (LBD). Using atomistic simulation, we found that RES bound ERα monomer in antagonist conformation, where Helix 12 moves away from the ligand pocket and orients into the co-activator binding groove of LBD, is more stable than RES bound ERα in agonist conformation, where Helix 12 lays over the ligand binding pocket. Upon dimerization, the agonistic conformation of RES-ERα dimer becomes more stable compared to the corresponding monomer but still remains less stable compared to the corresponding dimer in antagonist conformation. Interestingly, while the binding pocket and the binding contacts of RES to ERα are similar to those of pure agonist diethylstilbestrol (DES), the binding energy is much less and the hydrogen bonding contacts also differ providing clues for the partial agonistic character of RES on ERα.. Our Molecular Dynamics simulation of RES-ERα structures with agonist and antagonist orientations of Helix 12 suggests RES action is more similar to Selective Estrogen Receptor Modulator (SERM) opening up the importance of cellular environment and active roles of co-regulator proteins in a given system. Our study reveals that potential co-activators must compete with the Helix 12 and displace it away from the activator binding groove to enhance the agonistic activity.

    Topics: Animals; Binding Sites; Diethylstilbestrol; Dimerization; Estradiol; Estrogen Receptor alpha; Fulvestrant; Humans; Hydrogen Bonding; Ligands; Models, Molecular; Molecular Dynamics Simulation; Phytoestrogens; Protein Conformation; Protein Structure, Secondary; Protein Structure, Tertiary; Resveratrol; Stilbenes; Tamoxifen

2013
Down-regulation of epidermal growth factor receptor induced by estrogens and phytoestrogens promotes the differentiation of U2OS human osteosarcoma cells.
    Journal of cellular physiology, 2009, Volume: 220, Issue:1

    In previous studies on HeLa cells we demonstrated estrogen-responsiveness of the epidermal growth factor receptor (EGFR) gene, as 17beta-estradiol (E(2)) and selective estrogen receptor modulators (SERMs) genistein (G), daidzein (D), and 4-hydroxytamoxifen (4OH-T) modulated its transcription in a ligand- and estrogen receptor (ER) isoform-specific way. This study describes further investigations into the role of ERs in mediating the effects induced by E(2) and SERMs on EGFR expression, and the relationship between the actions of ERs and EGFR in U2OS osteosarcoma cells stably expressing ERalpha or ERbeta. Cell number and DNA content determination revealed that E(2), G, and D inhibited proliferation and cell cycle progression and promoted apoptosis in both cell lines. In parallel, changes in cell morphology typical of osteoblast maturation were observed via optical microscopy. Consistently, quantitative PCR and Western blot analysis showed an up-regulation of markers of osteoblast differentiation and bone repair, and a decrease in EGFR expression. The transfection of specific antisense (AS) oligonucleotides strengthened our hypothesis that EGFR reduction caused changes in the proliferation/differentiation pattern comparable to those induced by ER ligands. The link between the ER and EGFR pathways was confirmed by treatment with 4OH-T, which decreased the EGFR level and produced differentiation effects via ERalpha, but induced both EGFR expression and proliferation effects via ERbeta. In conclusion, we show that also in U2OS cells, E(2) and SERMs are able to modulate the expression of the EGFR gene and can affect events strictly controlled by its signaling pathway, such as the maturation of osteoblasts.

    Topics: Apoptosis; Biomarkers; Cell Cycle; Cell Differentiation; Cell Line, Tumor; Cell Proliferation; Cell Shape; Down-Regulation; ErbB Receptors; Estradiol; Estrogen Receptor alpha; Estrogen Receptor beta; Genistein; Humans; Isoflavones; Osteoblasts; Osteosarcoma; Phytoestrogens; RNA, Messenger; Selective Estrogen Receptor Modulators; Tamoxifen; Time Factors

2009
Differential response to phytoestrogens in endocrine sensitive and resistant breast cancer cells in vitro.
    International journal of cancer, 2006, Aug-01, Volume: 119, Issue:3

    Women approaching menopause increasingly investigate alternatives to hormone replacement therapy. Plant phytoestrogens are being promoted as "natural" alternatives but there is a lack of substantive data to advocate their safe use in breast cancer patients receiving tamoxifen (TAM), or in those who have relapsed. The aim of our study was to investigate the proliferative effects and mode of action of the phytoestrogens genistein, daidzein and coumestrol on TAM-sensitive (-s) and resistant (-r) breast cancer cells under in vitro conditions designed to mimic the hormonal environment of the pre- and post-menopausal breast. At physiological concentrations (<10 microM) and under reduced estrogen (E2) conditions, genistein was mitogenic to TAM-s cells with TAM-r cells generally refractory. Daidzein and coumestrol were growth stimulatory irrespective of TAM sensitivity. Transcriptional activity was ERE-mediated. Combining phytoestrogens with E2 (simulating the pre-menopausal breast environment) had no effect on growth of TAM-s or TAM-r cells. Addition of 4-HT mimicked the hormonal environment in post-menopausal breast cancer patients receiving TAM. The growth inhibitory effects of 4-HT were abrogated in TAM-s cells when combined with genistein and coumestrol, and to a lesser extent, daidzein, where significant growth stimulatory effects were observed. In TAM-r cells, proliferation did not exceed control values. At phytoestrogen concentrations above 10 microM, growth inhibitory effects were seen, irrespective of estrogenic environment or cell sensitivity to TAM. Our in vitro data suggests that phytoestrogens could have potentially adverse mitogenic effects on tumour cells and should probably be avoided by patients who remain sensitive to TAM or in those with pre-existing and possibly undiagnosed breast tumours.

    Topics: Antineoplastic Agents, Hormonal; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Coumestrol; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens; Female; Gene Expression; Genistein; Humans; Isoflavones; Luciferases; Phytoestrogens; Receptors, Progesterone; Response Elements; Tamoxifen; Transfection

2006
Phytoestrogen action in Leydig cells of Biłgoraj ganders (Anser anser).
    Reproductive biology, 2006, Volume: 6 Suppl 2

    The mechanism of phytoestrogen action in gonadal cells of ganders has not been elucidated. The aim of the study was to investigate in Biłgoraj ganders the possibility of phytoestrogen action via estrogen or androgen receptors or via protein tyrosine kinase pathways in Leydig cells. Genistein and daidzein (5 and 50 microM) as well as equol (50 microM) inhibited testosterone (T) secretion by incubated Leydig cells (1x10(5)/ml; 20 h; 37 degrees C). The effects of hydroxytamoxifen (estrogen receptor inhibitor) and cyproterone acetate (androgen receptor antagonist) on phytoestrogen inhibition of T release by Leydig cells were not observed. Lavendustin A (protein tyrosine kinases inhibitor) did not change T production. The influence of phytoestrogens seems not to be conducted via estrogen and androgen receptors or protein tyrosine kinases system in these cells, but further studies are required to completely examine the mechanism of phytoestrogens action in testes of ganders.

    Topics: Animals; Equol; Geese; Genistein; Isoflavones; Leydig Cells; Male; Phenols; Phytoestrogens; Poland; Protein-Tyrosine Kinases; Radioimmunoassay; Tamoxifen; Testosterone

2006
Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene: EEIG1.
    Molecular endocrinology (Baltimore, Md.), 2004, Volume: 18, Issue:2

    Estrogen receptors (ERs) are nuclear transcription factors that regulate gene expression in response to estrogen and estrogen-like compounds. Identification of estrogen-regulated genes in target cells is an essential step toward understanding the molecular mechanisms of estrogen action. Using cDNA microarray examinations, 19 genes were identified as induced by 17 beta-estradiol in MCF-7 cells, 10 of which have been reported previously to be estrogen responsive or to be linked with ER status. Five known estrogen-regulated genes, E2IG4, IGFBP4, SLC2A1, XBP1 and B4GALT1, and AFG3L1, responded quickly to estrogen treatment. A novel estrogen-responsive gene was identified and named EEIG1for early estrogen-induced gene 1. EEIG1 was clearly induced by 17 beta-estradiol within 2 h of treatment, and was widely responsive to a group of estrogenic compounds including natural and synthetic estrogens and estrogenic environmental compounds. EEIG1 was expressed in ER-positive but not in ER-negative breast cancer cell lines. EEIG1 expression was repressed by antiestrogens 4-OH-tamoxifen and ICI 182,780 but not by protein synthesis inhibitors cycloheximide and puromycin. These results provide evidence that some estrogenic compounds differentially enhance the transcription of estrogen-regulated genes and suggest a role for EEIG1 in estrogen action.

    Topics: Breast Neoplasms; Cycloheximide; DNA-Binding Proteins; Dose-Response Relationship, Drug; Estradiol; Estrogen Antagonists; Estrogens; Female; Fulvestrant; Galactosyltransferases; Gene Expression Regulation; Humans; Insulin-Like Growth Factor Binding Protein 4; Neoplasm Proteins; Nuclear Proteins; Oligonucleotide Array Sequence Analysis; Pesticides; Phytoestrogens; Protein Synthesis Inhibitors; Puromycin; Receptors, Estrogen; Regulatory Factor X Transcription Factors; Tamoxifen; Transcription Factors; Tumor Cells, Cultured; X-Box Binding Protein 1

2004
4-ethoxymethylphenol: a novel phytoestrogen that acts as an agonist for human estrogen receptors.
    The Journal of steroid biochemistry and molecular biology, 2003, Volume: 84, Issue:4

    Estrogen is the natural agonist of the estrogen receptor (ER). However, certain plant-derived compounds or phytoestrogens have been identified that mimic estrogens and act as agonists and/or antagonists of ERs, depending on subtype and target tissue. Using thin layer chromatography (TLC), gas chromatography-mass spectrometry (GC-MS), and proton nuclear magnetic resonance (1H-NMR), we identified a simple phenol, 4-ethoxymethylphenol (4EM), found in Maclura pomifera that acts as an agonist of ER-alpha and ER-beta in HeLa and MCF-7 cells. To study the effect of 4EM on ER-alpha and ER-beta activity, we performed transient transfection assays and showed that 4EM activated ER-dependent gene transcription in a dose-dependent manner on both ER subtypes and this activity was inhibited by trans-4-hydroxytamoxifen (4HT). Further, 4EM-mediated transcription in ER-alpha, like estrogen, was enhanced in the presence of coactivators, steroid receptor coactivator-1 (SRC-1), CREB binding proteins (CBP), and E6-associated protein (E6-AP). We found that 4EM was specific for ER and did not activate transcription of the progesterone receptor.

    Topics: Binding, Competitive; Chromatography, Thin Layer; CREB-Binding Protein; Dose-Response Relationship, Drug; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens, Non-Steroidal; Gas Chromatography-Mass Spectrometry; Genes, Reporter; HeLa Cells; Humans; Isoflavones; Ligases; Maclura; Magnetic Resonance Spectroscopy; Models, Chemical; Nuclear Proteins; Phenols; Phytoestrogens; Plant Preparations; Plasmids; Protein Binding; Receptors, Estrogen; Receptors, Progesterone; Recombinant Proteins; Tamoxifen; Trans-Activators; Transcription, Genetic; Transfection; Tumor Cells, Cultured; Ubiquitin-Protein Ligases

2003
Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin.
    Planta medica, 2002, Volume: 68, Issue:5

    Chemically synthesized naringenin derivatives, identical to natural occurring compounds, were tested for their estrogenic activity using two independent estrogen screening assays. Using a yeast based estrogen receptor assay, strong estrogenic activities were demonstrated for 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin, while the parent compound naringenin did not show recognizable estrogenic activity. In MVLN cells, a bioluminescent MCF-7-derived cell line, the estrogenic activity of 8-prenylnaringenin and 6-(1,1-dimethylallyl)naringenin was detected at concentrations of 10(-6) M and 5 x 10(-6) M respectively. Naringenin demonstrated estrogenic activity but only at a concentration of 10(-5) M. These estrogenic effects are mediated by the ER, as the antiestrogen 4-hydroxytamoxifen inhibited these activities. In summary, this study provides the further confirmation that 8-prenylnaringenin demonstrates high estrogenic activity, and demonstrated for the first time for 6-(1,1-dimethylallyl)naringenin a reasonable high estrogenic activity, while naringenin exhibit low or no estrogenic activity.

    Topics: Dose-Response Relationship, Drug; Estradiol Congeners; Estrogen Antagonists; Estrogens, Non-Steroidal; Flavanones; Flavonoids; Humans; Isoflavones; Molecular Structure; Phytoestrogens; Plant Preparations; Receptors, Estrogen; Tamoxifen; Tumor Cells, Cultured

2002
Estrogenic activity of naturally occurring anthocyanidins.
    Nutrition and cancer, 2001, Volume: 41, Issue:1-2

    Anthocyanins, which are natural plant pigments from the flavonoid family, represent substantial constituents of the human diet. Because some other bioflavonoids are known to have estrogenic activity, the aim of this study was to determine the estrogenic activity of the anthocyanine aglycones. Binding affinity to the estrogen receptor-alpha was 10,000- to 20,000-fold lower than that of the endogenous estrogen estradiol. In the estrogen receptor-positive cell line MCF-7, the anthocyanidins induced expression of a reporter gene. The tested anthocyanidins showed estrogen-inducible cell proliferation in two cell lines (MCF-7 and BG-1), but not in the receptor-negative human breast cancer cell line MDA-MB-231. The phytoestrogen-induced cell proliferation could be blocked by addition of the receptor antagonist 4-hydroxytamoxifen. Combination treatments with the endogenous estrogen estradiol resulted in a reduction of estradiol-induced cell proliferation. Overall, the tested anthocyanidins exert estrogenic activity, which might play a role in altering the development of hormone-dependent adverse effects.

    Topics: Anthocyanins; Breast Neoplasms; Cell Division; Estradiol; Estrogen Receptor alpha; Estrogens; Estrogens, Non-Steroidal; Female; Gene Expression; Humans; Isoflavones; Ovarian Neoplasms; Phytoestrogens; Plant Preparations; Receptors, Estrogen; Tamoxifen; Transcription, Genetic; Tumor Cells, Cultured

2001
TGF-alpha exerts biphasic effects on estrogen--and phytoestrogen-mediated gene expression in breast cancer cells.
    Endocrine, 1999, Volume: 11, Issue:1

    Transforming growth factor-alpha (TGF-alpha) contributes to the progression of mammary carcinogenesis in part through synergistic augmentation of estradiol (E2) action. To investigate this further, we sought to determine (1) whether the duration of TGF-alpha treatment might influence the nature of the TGF-alpha/E2 interaction, and (2) whether TGF-alpha would behave in a similar manner when combined with phytoestrogens. To this end, we transfected T47-D breast cancer cells with an estrogen-responsive reporter and then treated the cells (for 4-48 h) with varying concentrations of TGF-alpha, E2, the antiestrogen 4-hydroxy-tamoxifen (HOT), and/or one of three phytoestrogens. Our findings revealed that TGF-alpha has short-term synergistic and long-term inhibitory effects on E2- and phytoestrogen-regulated gene expression. Furthermore, this secondary inhibition of E2 action by TGF-alpha was similar in magnitude to that imposed by HOT. These findings demonstrate a novel role for TGF-alpha and invite reevaluation of current models regarding TGF-alphas interactions with E2 in breast cancer cells. Our results also raise the possibility that phytoestrogens, which interact with TGF-alpha in a manner conceptually identical to that of E2, may subserve a regulatory function in breast cancer cells.

    Topics: Adenocarcinoma; Breast Neoplasms; Drug Synergism; Estrogen Antagonists; Estrogens; Estrogens, Non-Steroidal; Gene Expression Regulation, Neoplastic; Humans; Isoflavones; Luciferases; Phytoestrogens; Plant Preparations; Receptors, Estrogen; Tamoxifen; Transfection; Transforming Growth Factor alpha; Tumor Cells, Cultured

1999
Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro.
    Nutrition and cancer, 1997, Volume: 27, Issue:1

    Experimental and epidemiologic studies support the view that soyfoods prevent cancer as well as diseases and symptoms associated with estrogen deficiency. Recent research suggests that the isoflavonoid genistein, a phytoestrogen found in abundance in soyfoods, may be one of the principal molecular components responsible for these health benefits. In this study we investigated the effects of a broad physiologically relevant concentration range of genistein on estrogen receptor (ER) binding, induction of the estrogen-regulated antigen pS2, and cell proliferation rate in ER(+) and ER(-) human breast cancer cells grown in vitro. Dose response to genistein was compared with that of estradiol, tamoxifen, and several other structurally similar iso- and bioflavonoids (e.g., equol, kaempferol, and quercetin). Our results revealed that genistein has potent estrogen agonist and cell growth-inhibitory actions over a physiologically achievable concentration range (10 nM-20 microM). Other flavonoids over the same concentration range were good estrogen agonists and poor cell growth inhibitors (equol) or poor estrogen agonists and potent growth inhibitors (kaempferol and quercetin). The growth-inhibitory actions of flavonoids were distinctly different from those of triphenyl antiestrogens like tamoxifen. In summary, our results reveal that genistein is unique among the flavonoids tested, in that it has potent estrogen agonist and cell growth-inhibitory actions over a physiologically relevant concentration range.

    Topics: Anticarcinogenic Agents; Breast; Breast Neoplasms; Cell Division; Chromans; DNA, Neoplasm; Dose-Response Relationship, Drug; Epithelial Cells; Epithelium; Equol; Estradiol; Estrogen Antagonists; Estrogens, Non-Steroidal; Female; Flavonoids; Genistein; Humans; Isoflavones; Kaempferols; Phytoestrogens; Plant Preparations; Protein Binding; Quercetin; Receptors, Estrogen; Tamoxifen; Tumor Cells, Cultured

1997