phytoestrogens and 4-ethylphenol

phytoestrogens has been researched along with 4-ethylphenol* in 5 studies

Other Studies

5 other study(ies) available for phytoestrogens and 4-ethylphenol

ArticleYear
Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling.
    Molecular nutrition & food research, 2017, Volume: 61, Issue:10

    Isoflavones are a class of polyphonic compounds present in legumes and are called phytoestrogens because of their estrogen-like activity. Estrogen influences the behavior of mammary epithelial cells (MECs) during pregnancy and lactation. In this study, we investigated the direct influences of isoflavones and their metabolites in milk production ability of MECs.. Mouse MECs were cultured with prolactin and dexamethasone (glucocorticoid analog) to induce milk production ability. Subsequently, lactating MECs were treated with each isoflavone. Coumestrol, biochanin A, genistein, and formononetin decreased the intracellular and secreted β-casein. On the other hand, p-ethylphenol, daidzein, and equol did not significantly influence β-casein production at any concentration. Coumestrol, biochanin A and genistein down-regulated the mRNA expression of whey acidic protein (WAP), lactoferrin and α-lactalbumin. In contrast, p-ethylphenol, daidzein and equol up-regulated β-casein and/or WAP with α-lactalbumin. Furthermore, coumestrol and genistein down-regulated the expression of prolactin receptor and signal transducer and activator of transcription 5 (STAT5) accompanied by a decrease in STAT5 phosphorylation.. Isoflavones and their metabolites influence the milk production ability of MECs through different interactions with prolactin/STAT5 signaling. Simultaneous intake of multiple isoflavones by consumption of legumes may induce promotive or adverse effects on lactating MECs.

    Topics: Animals; Caseins; Cells, Cultured; Coumestrol; Epithelial Cells; Female; Genistein; Isoflavones; Mammary Glands, Animal; Mice; Mice, Inbred ICR; Milk; Phenols; Phosphorylation; Phytoestrogens; Prolactin; STAT5 Transcription Factor

2017
Up-regulation of interleukin-4 production via NF-AT/AP-1 activation in T cells by biochanin A, a phytoestrogen and its metabolites.
    Toxicology and applied pharmacology, 2006, May-01, Volume: 212, Issue:3

    Phytoestrogens are naturally occurring compounds derived from plants. Although phytoestrogens exhibit many biological functions including estrogen agonist/antagonist properties, the effect on allergic responses remains unclear. In this study, we investigated whether biochanin A, a phytoestrogen and its metabolites, genistein, p-ethylphenol and phenolic acid, affect production of IL-4, a pro-inflammatory cytokine closely associated with allergic immune responses, in primary CD4(+) T cells and EL4 T lymphoma cells. Biochanin A, genistein and p-ethylphenol significantly enhanced IL-4 production from both CD4(+) T cells and EL4 cells in a dose-dependent manner, while phenolic acid did not. Biochanin A, genistein and p-ethylphenol also enhanced IL-4 gene promoter activity in EL4 cells transiently transfected with IL-4 promoter constructs, but this effect was impaired in EL4 cells transfected with an IL-4 promoter construct deleted of a P4 site carrying NF-AT and AP-1 binding sites. In addition, biochanin A, genistein and p-ethylphenol increased both NF-AT and AP-1 DNA binding activities, indicating that they might enhance IL-4 production via NF-AT/AP-1 activation. Furthermore, biochanin A, genistein and p-ethylphenol increased p38 MAPK phosphorylation and PKC activity, while they did not affect ERK phosphorylation. The enhanced NF-AT DNA binding activities were suppressed by inhibitors for PI3-K and PKC, but not by p38 MAPK inhibitors. In contrast, the enhanced AP-1 DNA binding activities and p38 MAPK phosphorylation were significantly suppressed by specific inhibitors for PKC and p38 MAPK, but not by PI3-K inhibitors. These results demonstrate, for the first time, that biochanin A, genistein and p-ethylphenol enhance IL-4 production in activated T cells by two independent pathways, PI3-K/PKC/NF-AT and PKC/p38 MAPK/AP-1.

    Topics: CD4-Positive T-Lymphocytes; Cell Line, Tumor; DNA; DNA-Binding Proteins; Dose-Response Relationship, Drug; Enzyme Inhibitors; Genistein; Humans; Interleukin-4; Lymphocyte Activation; Lymphoma; NFATC Transcription Factors; p38 Mitogen-Activated Protein Kinases; Phenols; Phosphorylation; Phytoestrogens; RNA, Messenger; Transcription Factor AP-1; Transfection; Up-Regulation

2006
Phytoestrogens and their metabolites inhibit the sensitivity of the bovine corpus luteum to luteotropic factors.
    The Journal of reproduction and development, 2006, Volume: 52, Issue:1

    The aim of this study was to examine whether active metabolites of phytoestrogens (equol and para-ethyl-phenol) inhibit sensitivity of bovine corpus luteum (CL) to luteinizing hormone (LH) and to auto/paracrine luteotropic factors (prostaglandin E2-PGE2 and prostaglandin F(2alpha)-PGF(2alpha)), and whether they influence pulsatile progesterone (P4) secretion by the bovine CL. In in vivo experiments, high levels of equol and para-ethyl-phenol were found in plasma and in the CL tissue of heifers and cows fed a soy bean diet (2.5 kg/animal/day), along with lower concentrations of P4 (P < 0.05). Both Prostaglandins (PG) and LH strongly stimulated P4 secretion in cultured pieces of CL that were collected from cows fed a standard diet (P < 0.01). There was no effect of PGs and LH on P4 stimulation in CLs obtained from cows fed a diet rich in soy bean. Finally, we examined whether active metabolites of phytoestrogens participated in regulation of pulsatile P4 secretion and LH-stimulated P4 secretion in vitro using a microdialysis system. Equol and para-ethyl-phenol had no effect on basic and pulsatile P4 secretion in CLs during 240 min of perfusion when compared to the control (P < 0.05). However, they inhibited LH-stimulated P4 secretion (P < 0.05). Phytoestrogens and their metabolites may disrupt CL function by inhibiting PG- and LH-stimulated P4 secretion.

    Topics: Adipose Tissue; Animals; Cattle; Corpus Luteum; Equol; Female; Glycine max; In Vitro Techniques; Isoflavones; Luteinizing Hormone; Microdialysis; Muscles; Phenols; Phytoestrogens; Progesterone

2006
Equol and para-ethyl-phenol stimulate prostaglandin F(2alpha) secretion in bovine corpus luteum: intracellular mechanisms of action.
    Prostaglandins & other lipid mediators, 2006, Volume: 79, Issue:3-4

    Corpus luteum (CL) is a reproductive gland that plays a crucial endocrine role in the regulation of the estrous cycle, fertility, and pregnancy in cattle. The main function of CL is secretion of progesterone (P4), an important hormone for establishment a successful pregnancy, whereas prostaglandin F(2alpha) (PGF(2alpha)), 17beta-estradiol (E(2)) and testosterone (T) are implicated in the regulation of luteolysis. It has been shown that phytoestrogens may disrupt numerous reproductive functions on several levels of regulation and via different intracellular mechanisms. Using a cell-culture system of steroidogenic cells of the bovine CL, we determined effects of active phytoestrogen metabolites (equol and para-ethyl-phenol) on PGF(2alpha), P4, and T synthesis in steroidogenic CL cells. Moreover, we examined the intracellular mechanisms of phytoestrogen metabolite actions. Phytoestrogen metabolites did not affect P4 production in steroidogenic CL cells. However, PGF(2alpha) and T were significantly stimulated by metabolites of phytoestrogens in the bovine steroidogenic CL cells. To study the intracellular mechanism of endogenous E(2) and phytoestrogen metabolites action, steroidogenic cells were preincubated with a phospholipase C inhibitor (U73122), a protein kinase C inhibitor (staurosporine), an estrogen receptor antagonist (ICI) and a transcription inhibitor (actinomycin D) for 0.5h, and then stimulated with para-ethyl-phenol, equol or E(2). Only U73122 and staurosporine totally reduced the stimulatory effect of E(2) on PGF(2alpha) production by the cells. ICI and actinomycin D only partially reduced E(2) action on CL cells. In contrast, the stimulatory effect of phytoestrogen metabolites was totally inhibited by ICI and actinomycin D. Moreover, in contrast to E(2) action, phytoestrogen metabolites did not cause intracellular calcium mobilization in the cells. The present study demonstrated that phytoestrogen metabolites stimulate PGF(2alpha) secretion in steroidogenic cells of the bovine CL via the estrogen receptor-dependent, genomic pathway.

    Topics: Animals; Calcium; Cattle; Cells, Cultured; Corpus Luteum; Dactinomycin; Diet; Dinoprost; Equol; Estrenes; Female; Glycine max; Isoflavones; Luteinizing Hormone; Phenols; Phytoestrogens; Pyrrolidinones; Staurosporine; T-Lymphocytes; Tetradecanoylphorbol Acetate

2006
Phyto- and endogenous estrogens differently activate intracellular calcium ion mobilization in bovine endometrial cells.
    The Journal of reproduction and development, 2006, Volume: 52, Issue:6

    The main purpose of this study was to check whether phyto- and endogenous estrogens influence calcium ion mobilization [Ca(2+)](i) in bovine endometrial cells and whether this action is connected with biological effects i.e. prostaglandin (PG)F(2alpha) production. In our study we used two calcium measurement methods by comparing the microscopic method with widely used quantitative - spectrofluorometric method of [Ca(2+)](i) measurement. We also wanted to confirm whether visualization of calcium ion [Ca(2+)](i) in cells using microscopic method supported by micro image analysis (Micro Image Olympus system) reflects real, qualitative changes in the ion concentration. In both methods a cell-permeable form of fluorescent [Ca(2+)](i) indicator Fura-2 was used. Cultured bovine endometrial epithelial and stromal cells influenced by phorbol-2-myristate-13-acetate (PMA; positive control), estradiol 17-beta (E(2); endogenous estrogen) and active metabolites of phytoestrogens (environmental estrogens) were used as a model to study PGF(2alpha) secretion and [Ca(2+)](i) mobilization in the cells. Equol and para-ethyl-phenol in doses of 10(-8)-10(-6) M increased PGF(2alpha) concentration both in epithelial and stromal cells (P<0.05). In both methods, equol and para-ethyl-phenol did not cause intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P>0.05). Both methods revealed that only E(2) and PMA induced intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P<0.05). The results of both methods were highly correlated (P<0.001; r=0.82 for epithelial cells and r=0.89 for stromal cells). In conclusion, both methods gave approximately the same results and showed that phytoestrogens, in contrast to PMA and E(2), did not cause intracellular [Ca(2+)](i) mobilization in endometrial cells. The obtained results proved that the [Ca(2+)](i) visualization method supported by micro image analysis can produce similar results to the spectrofluorometric method.

    Topics: Animals; Calcium; Cattle; Dinoprost; Endometrium; Epithelial Cells; Equol; Estradiol; Female; Fluorescent Dyes; Fura-2; Isoflavones; Microscopy, Fluorescence; Phenols; Phytoestrogens; Spectrometry, Fluorescence; Stromal Cells; Tetradecanoylphorbol Acetate

2006