phytochlorin and pyropheophorbide-a

phytochlorin has been researched along with pyropheophorbide-a* in 2 studies

Other Studies

2 other study(ies) available for phytochlorin and pyropheophorbide-a

ArticleYear
ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy.
    Cancer biology & therapy, 2005, Volume: 4, Issue:2

    In photodynamic therapy (PDT), a tumor-selective photosensitizer is administered followed by activation of the photosensitizer by exposure to a light source of a given wavelength. This, in turn, generates reactive oxygen species that induce cellular apoptosis and necrosis in tumor tissue. Based on our earlier finding that the photosensitizer pheophorbide a is an ABCG2 substrate, we explored the ability of ABCG2 to transport photosensitizers with a structure similar to that of pheophorbide a. ABCG2-overexpressing NCI-H1650 MX50 bronchoalveolar carcinoma cells were found to have reduced intracellular accumulation of pyropheophorbide a methyl ester and chlorin e6 compared to parental cells as measured by flow cytometry. The ABCG2 inhibitor fumitremorgin C was found to abrogate ABCG2-mediated transport. Intracellular fluorescence of hematoporphyrin IX, meso-tetra(3-hydroxyphenyl)porphyrin, and meso-tetra(3-hydroxyphenyl)chlorin was not substantially affected by ABCG2. ABCG2-overexpressing cells also displayed decreased intracellular fluorescence of protoporphyrin IX generated by exogenous application of 5-aminolevulinic acid. Mutations at amino acid 482 in the ABCG2 protein known to affect substrate specificity were not found to impact transport of the photosensitizers. In cytotoxicity assays, ABCG2-transfected HEK-293 cells were 11-fold, 30-fold, 4-fold, and >7-fold resistant to PDT with pheophorbide a, pyropheophorbide a methyl ester, chlorin e6, and 5-aminolevulinic acid, respectively. ABCG2-transfected cells were not resistant to PDT with meso-tetra(3-hydroxyphenyl) chlorin. Neither multidrug resistance-associated protein 1 expression nor P-glycoprotein expression appreciably decreased the intracellular fluorescence of any of the photosensitizers examined as determined by flow cytometry. The results presented here implicate ABCG2 as a possible cause for cellular resistance to photodynamic therapy.

    Topics: Adenocarcinoma, Bronchiolo-Alveolar; Aminolevulinic Acid; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Proliferation; Chlorophyll; Chlorophyllides; Flow Cytometry; Fluorescence; Humans; Indoles; Kidney; Lung Neoplasms; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Photochemotherapy; Photosensitizing Agents; Porphyrins; Protoporphyrins; Tumor Cells, Cultured

2005
Internalization of aggregated photosensitizers by tumor cells: subcellular time-resolved fluorescence spectroscopy on derivatives of pyropheophorbide-a ethers and chlorin e6 under femtosecond one- and two-photon excitations.
    Photochemistry and photobiology, 2002, Volume: 76, Issue:6

    Amphiphilic sensitizers self-associate in aqueous environments and form aggregated species that exhibit no or only negligible photodynamic activity. However, amphiphilic photosensitizers number among the most potent agents of photodynamic therapy. The processes by which these sensitizers are internalized into tumor cells have yet to be fully elucidated and thus remain the subject of debate. In this study the uptake of photosensitizer aggregates into tumor cells was examined directly using subcellular time-resolved fluorescence spectroscopy with a high temporal resolution (20-30 ps) and high sensitivity (time-correlated single-photon counting). The investigations were performed on selected sensitizers that exhibit short fluorescence decay times (< 50 ps) in aggregated form. Derivatives of pyropheophorbide-a ether and chlorin e6 with varying lipophilicity were used for the study. The characteristic fluorescence decay times and spectroscopic features of the sensitizer aggregates measured in aqueous solution also could be observed in A431 human endothelial carcinoma cells administered with these photosensitizers. This shows that tumor cells can internalize sensitizers in aggregated form. Uptake of aggregates and their monomerization inside cells were demonstrated directly for the first time by means of fluorescence lifetime imaging with a high temporal resolution. Internalization of the aggregates seems to be endocytosis mediated. The degree of their monomerization in tumor cells is strongly influenced by the lipophilicity of the compounds.

    Topics: Chlorophyll; Chlorophyllides; Fluorescence; Humans; Kinetics; Light; Molecular Structure; Photons; Photosensitizing Agents; Porphyrins; Solutions; Spectrometry, Fluorescence; Time Factors; Tumor Cells, Cultured

2002