phytanoyl-coenzyme-a and pristanic-acid

phytanoyl-coenzyme-a has been researched along with pristanic-acid* in 2 studies

Other Studies

2 other study(ies) available for phytanoyl-coenzyme-a and pristanic-acid

ArticleYear
Peroxisomes contain a specific phytanoyl-CoA/pristanoyl-CoA thioesterase acting as a novel auxiliary enzyme in alpha- and beta-oxidation of methyl-branched fatty acids in mouse.
    The Journal of biological chemistry, 2007, Sep-14, Volume: 282, Issue:37

    Phytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism. Sequence analysis of ACOT6 revealed a putative peroxisomal targeting signal at the C-terminal end, and cellular localization experiments verified it as a peroxisomal enzyme. Subcellular fractionation experiments showed that peroxisomes contain by far the highest phytanoyl-CoA/pristanoyl-CoA thioesterase activity in the cell, which could be almost completely immunoprecipitated using an ACOT6 antibody. Acot6 mRNA was mainly expressed in white adipose tissue and was co-expressed in tissues with Acox3 (the pristanoyl-CoA oxidase). Furthermore, Acot6 was identified as a target gene of the peroxisome proliferator-activated receptor alpha (PPARalpha) and is up-regulated in mouse liver in a PPARalpha-dependent manner.

    Topics: Animals; Base Sequence; Coenzyme A; Fatty Acids; Male; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Oxidation-Reduction; Peroxisomes; Phytanic Acid; PPAR alpha; Thiolester Hydrolases

2007
Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver.
    Journal of lipid research, 1997, Volume: 38, Issue:10

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied. 2-Hydroxyphytanic acid was converted into 2-ketophytanic acid and pristanic acid. When ATP, Mg2+, and coenzyme A were added to the incubation medium, higher amounts of pristanic acid were formed, whereas the formation of 2-ketophytanic acid strongly decreased. When 2-hydroxyphytanoyl-CoA was used as substrate, there was virtually no 2-ketophytanic acid formation. However, pristanic acid was formed in higher amounts than with 2-hydroxyphytanic acid as substrate. This reaction was stimulated by NAD+ and NADP+. Pristanic acid, and not pristanoyl-CoA was found to be the product of the reaction. These results suggest the existence of two pathways for decarboxylation of 2-hydroxyphytanic acid. The first one, starting from 2-hydroxyphytanic acid, involves the formation of 2-ketophytanic acid with only a small amount of pristanic acid being formed. The second pathway, which starts from 2-hydroxyphytanoyl-CoA, does not involve 2-ketophytanic acid and generates higher amounts of pristanic acid. The first pathway, which is peroxisomally localized, was found to be deficient in Zellweger syndrome, whereas the second pathway, localized in microsomes, was normally active. We conclude that the second pathway is predominant under in vivo conditions.

    Topics: Biomarkers; Cell Fractionation; Coenzyme A; Decarboxylation; Fatty Acids; Humans; Liver; Microbodies; Microsomes; NAD; Phytanic Acid; Zellweger Syndrome

1997