phyllanthin and corilagin

phyllanthin has been researched along with corilagin* in 3 studies

Other Studies

3 other study(ies) available for phyllanthin and corilagin

ArticleYear
An Insight Into the Anxiolytic Effects of Lignans (Phyllanthin and Hypophyllanthin) and Tannin (Corilagin) Rich Extracts of
    Combinatorial chemistry & high throughput screening, 2021, Volume: 24, Issue:3

    The extracts and the compounds isolated from Phyllanthus amarus Schumm and Thonn (Family: Euphorbiaceae) have shown a wide spectrum of pharmacological activities including antiviral, antibacterial, antiplasmodial, antimalarial, antimicrobial, anticancer, antidiabetic, hypolipidemic, antioxidant, hepatoprotective, nephroprotective and diurectic properties.. This investigation was aimed at exploring the anxiolytic potential of Phyllanthus amarus standardized extracts and predict probable role of marker phyto constitutents.. Three standardized extracts of Phyllanthus amarus plant viz. standardized aqueous extract of Phyllanthus amarus whole plant (PAAE), standardized methanolic extract of P. amarus leaf (PAME) and the standardized hydro-methanolic extract of P. amarus leaf (PAHME) were tested in the classical animal models of anxiety: Elevated plus-maze model and Light & Dark Exploration test.. The lower doses of the tannin rich extract (PAHME) of the P. amarus possess significant anxiolytic activity compared to lignin rich (PAME) and aqueous extracts (PAAE), while at a higher dose (400mg/kg) the results of all three extracts appears to be potentially sedative. While the molecular docking studies support these probable anxiolytic, the sedative effects of the Phyllanthus amarus extracts could be due to the interaction of tannins and lignans with the GABAbenzodiazepine receptor complex.. The results of the present study indicate that the tannin-rich extract of the P. amarus may have potential clinical applications in the management of anxiety. It can be further studied for optimum dosage to be used as a future of anti-anxiety drug development or as a standardized Phytomedicine.

    Topics: Animals; Anti-Anxiety Agents; Anxiety; Female; Glucosides; Hydrolyzable Tannins; Lignans; Male; Maze Learning; Mice; Molecular Docking Simulation; Molecular Structure; Phyllanthus; Plant Extracts

2021
Mechanistic Studies of the Antiallergic Activity of
    Molecules (Basel, Switzerland), 2021, Jan-28, Volume: 26, Issue:3

    Topics: Animals; Anti-Allergic Agents; Biomarkers; Cell Line, Tumor; Chromatography, High Pressure Liquid; Glucosides; Histamine Antagonists; Hydrolyzable Tannins; Hypersensitivity; Ketotifen; Lignans; Mast Cells; Phyllanthus; Plant Extracts; Rats; Receptors, Histamine

2021
Pain Modulation by Lignans (Phyllanthin and Hypophyllanthin) and Tannin (Corilagin) Rich Extracts of Phyllanthus amarus in Carrageenan-induced Thermal and Mechanical Chronic Muscle Hyperalgesia.
    Phytotherapy research : PTR, 2015, Volume: 29, Issue:8

    The current study was aimed at evaluating the antihyperalgesic effects of lignans (phyllanthin and hypophyllanthin) and tannin (corilagin) rich three standardized extracts of Phyllanthus amarus in a model of chronic musculoskeletal inflammatory pain. Three percent carrageenan injected in the gastrocnemius muscle produced hyperalgesia to mechanical and heat stimuli ipsilaterally, which spreads to the contralateral side within 7 to 9 days. To investigate the effects on chronic thermal and mechanical hypersensitivity, three extracts of P. amarus in three doses (100, 200, and 400 mg/kg) were administered to animals intraperitoneally from 14th day to 22nd day after intramuscular injection of carrageenan. It was observed that intraperitoneal administrations of Phyllanthus extracts showed antihyperalgesic activity, as they elevated thermal and mechanical threshold, which was supported by histopathological observations along with reduction in prostaglandin E2 (PGE2) concentration. In conclusion, we strongly suggest that the observed antihyperalgesic and antiinflammatory effects of P. amarus in current pain model are mediated via spinal or supraspinal neuronal mechanisms, mainly by inhibition of PGE2. Modulation of chronic muscular inflammation may be due to presence of phytoconstituents like phyllanthin, hypophyllanthin, and corilagin, which offers a promising means for treatment of chronic muscle pain.

    Topics: Animals; Carrageenan; Dinoprostone; Disease Models, Animal; Glucosides; Hydrolyzable Tannins; Hyperalgesia; Inflammation; Lignans; Male; Muscle, Skeletal; Musculoskeletal Pain; Pain; Phyllanthus; Rats, Wistar

2015