phycocyanobilin and phycoviolobilin

phycocyanobilin has been researched along with phycoviolobilin* in 7 studies

Other Studies

7 other study(ies) available for phycocyanobilin and phycoviolobilin

ArticleYear
Photoreversible interconversion of a phytochrome photosensory module in the crystalline state.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 01-07, Volume: 117, Issue:1

    A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in

    Topics: Adenylyl Cyclases; Crystallography; Crystallography, X-Ray; Cyanobacteria; Cyclic GMP; Light; Models, Molecular; Phosphoric Diester Hydrolases; Photoreceptor Cells; Phycobilins; Phycocyanin; Phytochrome; Protein Conformation; Protein Domains; Thermosynechococcus; Trans-Activators

2020
A biliverdin-binding cyanobacteriochrome from the chlorophyll d-bearing cyanobacterium Acaryochloris marina.
    Scientific reports, 2015, Jan-22, Volume: 5

    Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCRs reversibly photoconvert at shorter wavelengths, i.e., the near-ultraviolet to green region. Notably, prior to this report, CBCRs containing biliverdin (BV), which absorbs at longer wavelengths than do PCB and PVB, have not been found. Herein, we report that the typical red/green CBCR AM1_1557 from the chlorophyll d-bearing cyanobacterium Acaryochloris marina can bind BV almost comparable to PCB. This BV-bound holoprotein reversibly photoconverts between a far red light-absorbing form (Pfr, λmax = 697 nm) and an orange light-absorbing form (Po, λmax = 622 nm). At room temperature, Pfr fluoresces with a maximum at 730 nm. These spectral features are red-shifted by 48~77 nm compared with those of the PCB-bound domain. Because the absorbance of chlorophyll d is red-shifted compared with that of chlorophyll a, the BV-bound AM1_1557 may be a physiologically relevant feature of A. marina and is potentially useful as an optogenetic switch and/or fluorescence imager.

    Topics: Biliverdine; Chlorophyll; Cyanobacteria; Light; Photoreceptors, Microbial; Phycobilins; Phycocyanin; Protein Binding

2015
Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924.
    Biophysical journal, 2014, Nov-04, Volume: 107, Issue:9

    Cyanobacteriochromes are members of the phytochrome superfamily of photoreceptors and are of central importance in biological light-activated signaling mechanisms. These photoreceptors are known to reversibly convert between two states in a photoinitiated process that involves a basic E/Z isomerization of the bilin chromophore and, in certain cases, the breakage of a thioether linkage to a conserved cysteine residue in the bulk protein structure. The exact details and timescales of the reactions involved in these photoconversions have not been conclusively shown. The cyanobacteriochrome Tlr0924 contains phycocyanobilin and phycoviolobilin chromophores, both of which photoconvert between two species: blue-absorbing and green-absorbing, and blue-absorbing and red-absorbing, respectively. Here, we followed the complete green-to-blue photoconversion process of the phycoviolobilin chromophore in the full-length form of Tlr0924 over timescales ranging from femtoseconds to seconds. Using a combination of time-resolved visible and mid-infrared transient absorption spectroscopy and cryotrapping techniques, we showed that after photoisomerization, which occurs with a lifetime of 3.6 ps, the phycoviolobilin twists or distorts slightly with a lifetime of 5.3 ?s. The final step, the formation of the thioether linkage with the protein, occurs with a lifetime of 23.6 ms.

    Topics: Cyanobacteria; Light; Molecular Structure; Photochemical Processes; Photoreceptors, Microbial; Phycobilins; Phycocyanin; Protein Conformation; Spectrum Analysis

2014
Chemical inhomogeneity in the ultrafast dynamics of the DXCF cyanobacteriochrome Tlr0924.
    The journal of physical chemistry. B, 2012, Sep-06, Volume: 116, Issue:35

    Cyanobacteriochromes (CBCRs) are diverse biliprotein photosensors distantly related to the red/far-red photoreceptors of the phytochrome family. There are several subfamilies of CBCRs, displaying varied spectral responses spanning the entire visible region. Tlr0924 belongs to the DXCF subfamily that utilizes the Cys residue in a conserved Asp-Xaa-Cys-Phe (DXCF) motif to form a second covalent linkage to the chromophore, resulting in a blue-absorbing dark state. Photoconversion leads to elimination of this linkage, resulting in a green-absorbing photoproduct. Tlr0924 initially incorporates phycocyanobilin (PCB) as a chromophore, exhibiting a blue/orange photocycle, but slowly isomerizes PCB to phycoviolobilin (PVB) to yield a blue/green photocycle. Ultrafast transient absorption spectroscopy was used to study both forward and reverse reaction photodynamics of the recombinant GAF domain of Tlr0924. Primary photoproducts were identified, as were subsequent intermediates at 1 ms. PCB and PVB population photodynamics were decomposed using global target analysis. PCB and PVB populations exhibit similar and parallel photocycles in Tlr0924, but the PVB population exhibits faster excited-state decay in both reaction directions. On the basis of longer time analysis, we show that the photochemical coordinate (15,16-isomerization) and second-linkage coordinate (elimination or bond formation at C10) are separate processes in both directions.

    Topics: Amino Acid Motifs; Amino Acid Sequence; Isomerism; Kinetics; Photoreceptors, Microbial; Phycobilins; Phycocyanin; Protein Structure, Tertiary; Recombinant Proteins

2012
The cyanobacteriochrome, TePixJ, isomerizes its own chromophore by converting phycocyanobilin to phycoviolobilin.
    Biochemistry, 2011, Feb-15, Volume: 50, Issue:6

    The cyanobacterial phototaxis regulator protein, TePixJ, is a member of the subfamily of cyanobacteriochromes that binds phycoviolobilin (PVB) as a chromophore and exhibits reversible photoconversion between blue light-absorbing (Pb) and green light-absorbing (Pg) forms. We reconstituted the PVB-binding photoactive holocomplex in vivo and in vitro. Coexpression of the apoprotein and phycocyanobilin (PCB) in Escherichia coli (in vivo reconstitution) produced a mixture of the PCB-bound and PVB-bound holoproteins. Reconstitution in vitro of the apoprotein and synthetic PCB quickly generated a photoactive complex, which covalently bound PCB and exhibited partially reversible photoconversion between two species by UV-vis spectroscopy (with a λ(max) values of 430 and 545 nm). Further incubation produced slow isomerization of PCB to PVB with concomitant improvement of photoreactivity. Site-directed mutagenesis confirmed that Cys522, and a second conserved Cys (Cys494), are both essential for the assembly of the photoactive complex. Fourier transform infrared (FTIR) spectroscopy revealed green light-induced cross-linking, and blue light-induced release, of a thiol group, possibly that of Cys494. These results suggest that the Pb/Pg-type cyanobacteriochrome TePixJ is assembled in at least three steps: (i) rapid and stable chromophorylation of PCB, (ii) additional photoreversible chromophorylation, and (iii) subsequent slow isomerization of PCB to PVB. In addition to its known autolyase activity with Cys522 and photoreversible isomerase activity (of the Z and E isomers at C15 and C16 of PCB), the GAF domain of TePixJ therefore appears to have other roles: as an isomerase (converting PCB to PVB) and as a photoreversible autolyase with a second conserved Cys residue.

    Topics: Bacterial Proteins; Cyanobacteria; Escherichia coli; Isomerism; Mutagenesis, Site-Directed; Phycobilins; Phycocyanin; Spectroscopy, Fourier Transform Infrared

2011
Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.
    The Journal of biological chemistry, 2009, Oct-23, Volume: 284, Issue:43

    Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C3(1) carbon of the ethylidene side chain and the C4 or C5 carbons in the A-B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb --> Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.

    Topics: Algal Proteins; Arabidopsis; Arabidopsis Proteins; Bacterial Proteins; Cyanobacteria; Cysteine; Eukaryota; Phycobilins; Phycocyanin; Protein Structure, Tertiary

2009
Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore.
    Plant & cell physiology, 2007, Volume: 48, Issue:9

    Cyanobacteria have several putative photoreceptors (designated cyanobacteriochromes) that are related to but distinct from the established phytochromes. The GAF domain of the phototaxis regulator, PixJ, from a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (TePixJ_GAF) is a cyanobacteriochrome which exhibits reversible photoconversion between a blue light-absorbing form (max = 433 nm) and a green light-absorbing form (max = 531 nm). To study the chromophore, we prepared TePixJ_GAF chromoprotein from heterologously expressed Synechocystis and performed spectral analysis after denaturation by comparing it with the cyanobacterial phytochrome Cph1 which harbors phycocyanobilin (PCB) as a chromophore. The results indicated that the chromophore of TePixJ is not PCB, but its isomer, phycoviolobilin (PVB). It is suggested that the GAF domain of TePixJ has auto-lyase and auto-isomerase activities.

    Topics: Bacterial Proteins; Cyanobacteria; Light; Photoreceptors, Microbial; Phycobilins; Phycocyanin; Spectrum Analysis

2007