phthalocyanine has been researched along with methane in 21 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (23.81) | 29.6817 |
2010's | 12 (57.14) | 24.3611 |
2020's | 4 (19.05) | 2.80 |
Authors | Studies |
---|---|
Chen, Q; Dai, L | 1 |
Lee, YH; Matthews, RD; Pavlostathis, SG | 1 |
Friedlein, R; Gorelik, T; Kolb, U; Müllen, K; Salaneck, WR; Wu, J; Zhi, L | 1 |
Ballesteros, B; Campidelli, S; de la Torre, G; Ehli, C; Guldi, DM; Prato, M; Torres, T | 1 |
Bedioui, F; Griveau, S; Nyokong, T; Ozoemena, KI; Zagal, JH | 1 |
Ehli, C; Engmann, S; Guldi, DM; Hahn, U; Oelsner, C; Torres, T | 1 |
Campidelli, S; Filoramo, A; Ho, KH; Jégou, P; Jousselme, B; Rivier, L | 1 |
Ballesteros, B; Bartelmess, J; Campidelli, S; de la Torre, G; Guldi, DM; Kiessling, D; Prato, M; Torres, T | 1 |
Arduini, F; Evtugyn, GA; Ivanov, AN; Moscone, D; Palleschi, G; Younusov, RR | 1 |
Chitta, R; D'Souza, F; Das, SK; Hasobe, T; Ito, O; Maligaspe, E; Sandanayaka, AS; Subbaiyan, NK | 1 |
Mashazi, P; Mdluli, P; Mugadza, T; Nyokong, T; Sosibo, N; Vilakazi, S | 1 |
Brito, JB; de Souza, NC; Gomes, DJ; Justina, VD; Lima, AM; Olivati, CA; Silva, JR | 1 |
Chabre, YM; Gingras, M; Roy, M; Roy, R | 1 |
Kruusenberg, I; Matisen, L; Tammeveski, K | 1 |
Karsten, A; Ndhundhuma, I; Nyokong, T; Ogbodu, RO | 1 |
Balskus, EP; Wallace, S | 1 |
Adekunle, AS; Ebenso, EE; Mphuthi, NG | 1 |
Venugopala Reddy, KR | 1 |
Demirbas, E; Durmuş, M; Makhseed, S; Şenocak, A; Tümay, SO | 1 |
Akyüz, D; Demirbas, E; Durmuş, M; Köksoy, B; Şenocak, A | 1 |
Alves da Silva, D; Araújo, AR; Carvalho da Silva, VN; Eiras, C; Farias, EAO; Hugo do Vale Bastos, V; Neves Fernandes, JR; Teixeira, SS; Teles Souza, JM; Xavier Magalhães, FE | 1 |
2 review(s) available for phthalocyanine and methane
Article | Year |
---|---|
Carbon nanotubes, phthalocyanines and porphyrins: attractive hybrid materials for electrocatalysis and electroanalysis.
Topics: Biosensing Techniques; Catalysis; Electrochemistry; Indoles; Isoindoles; Metalloporphyrins; Nanotechnology; Nanotubes, Carbon; Oxidation-Reduction | 2009 |
How do multivalent glycodendrimers benefit from sulfur chemistry?
Topics: Anti-Infective Agents; Biosensing Techniques; Dendrimers; Electrochemical Techniques; Glycoconjugates; Gram-Negative Bacteria; Indoles; Isoindoles; Nanotubes, Carbon; Porphyrins; Sulfur; Thioglycosides | 2013 |
19 other study(ies) available for phthalocyanine and methane
Article | Year |
---|---|
Three-dimensional micropatterns of well-aligned carbon nanotubes produced by photolithography.
Topics: Crystallization; Hot Temperature; Indoles; Iron; Isoindoles; Materials Testing; Microscopy, Electron, Scanning; Molecular Conformation; Nanotechnology; Nanotubes, Carbon; Photography; Quality Control; Quartz; Silicon Dioxide | 2001 |
Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions.
Topics: Anthraquinones; Bacteria, Aerobic; Bacteria, Anaerobic; Biodegradation, Environmental; Biomass; Coloring Agents; Indoles; Isoindoles; Metalloporphyrins; Methane; Oxidation-Reduction; Textile Industry; Triazines; Waste Management; Water Pollutants, Chemical; Water Purification | 2006 |
Solid-state pyrolyses of metal phthalocyanines: a simple approach towards nitrogen-doped CNTs and metal/carbon nanocables.
Topics: Electrochemistry; Electrons; Indoles; Isoindoles; Metal Nanoparticles; Microscopy, Electron, Scanning; Microscopy, Electron, Transmission; Nanotechnology; Nanotubes, Carbon; Nitrogen; Spectrophotometry; Temperature; X-Ray Diffraction | 2005 |
Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid.
Topics: Indoles; Isoindoles; Microscopy, Atomic Force; Molecular Structure; Nanotubes, Carbon; Photochemistry; Radiation-Sensitizing Agents | 2007 |
Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes.
Topics: Dendrimers; Electron Transport; Hydrophobic and Hydrophilic Interactions; Imides; Indoles; Isoindoles; Microscopy, Atomic Force; Microscopy, Electron, Transmission; Nanotubes, Carbon; Perylene; Polyethylene Glycols; Solubility; Solvents; Spectrum Analysis; Surface Properties; Water | 2010 |
Zn-porphyrin/Zn-phthalocyanine dendron for SWNT functionalisation.
Topics: Dendrimers; Electrochemistry; Indoles; Isoindoles; Metalloporphyrins; Molecular Structure; Nanotubes, Carbon; Zinc | 2010 |
Phthalocyanine-pyrene conjugates: a powerful approach toward carbon nanotube solar cells.
Topics: Bioelectric Energy Sources; Indoles; Isoindoles; Nanotubes, Carbon; Pyrenes; Solar Energy | 2010 |
Acetylcholinesterase biosensor based on single-walled carbon nanotubes--Co phtalocyanine for organophosphorus pesticides detection.
Topics: Acetylcholinesterase; Biosensing Techniques; Cholinesterase Inhibitors; Electrodes; Indoles; Isoindoles; Limit of Detection; Malathion; Nanotubes, Carbon; Organophosphorus Compounds; Paraoxon; Pesticides; Reproducibility of Results | 2011 |
Diameter-sorted SWCNT-porphyrin and SWCNT-phthalocyanine conjugates for light-energy harvesting.
Topics: Crown Ethers; Electricity; Electrodes; Electron Transport; Indoles; Isoindoles; Light; Metalloporphyrins; Nanotechnology; Nanotubes, Carbon; Photochemical Processes; Photosensitizing Agents; Pyrenes; Semiconductors | 2011 |
The effects of carbon nanotubes on the electrocatalysis of hydrogen peroxide by metallo-phthalocyanines.
Topics: Catalysis; Electrochemistry; Hydrogen Peroxide; Indoles; Isoindoles; Nanotubes, Carbon; Organometallic Compounds; Spectrum Analysis; Surface Properties | 2011 |
Nanostructured films from phthalocyanine and carbon nanotubes: surface morphology and electrical characterization.
Topics: Chitosan; Electric Conductivity; Indoles; Isoindoles; Nanostructures; Nanotubes, Carbon; Surface Properties | 2012 |
Oxygen electroreduction on multi-walled carbon nanotube supported metal phthalocyanines and porphyrins in alkaline media.
Topics: Electrodes; Equipment Design; Equipment Failure Analysis; Indoles; Isoindoles; Metal Nanoparticles; Nanotubes, Carbon; Oxidation-Reduction; Oxygen; Porphyrins | 2013 |
Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells.
Topics: Cell Line, Tumor; Folic Acid; Humans; Indoles; Isoindoles; Melanoma; Nanotubes, Carbon; Photochemotherapy; Radiation-Sensitizing Agents; Vitamin B Complex; Zinc | 2015 |
Interfacing microbial styrene production with a biocompatible cyclopropanation reaction.
Topics: Catalysis; Cyclopropanes; Escherichia coli; Ferric Compounds; Glucose; Indoles; Isoindoles; Methane; Styrene | 2015 |
Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor.
Topics: Ascorbic Acid; Electrochemical Techniques; Electrodes; Epinephrine; Ferric Compounds; Glass; Humans; Hydrogen-Ion Concentration; Indoles; Isoindoles; Metal Nanoparticles; Nanotubes, Carbon; Norepinephrine; Oxidation-Reduction; Solutions; Zinc Oxide | 2016 |
Sensitive and reliable electrochemical detection of nitrite and H
Topics: Beta vulgaris; Cobalt; Coordination Complexes; Electrochemical Techniques; Electrodes; Hydrogen Peroxide; Indoles; Isoindoles; Limit of Detection; Methionine; Nanotubes, Carbon; Nitrites; Oxidation-Reduction; Reproducibility of Results | 2020 |
A synergetic and sensitive physostigmine pesticide sensor using copper complex of 3D zinc (II) phthalocyanine-SWCNT hybrid material.
Topics: Biosensing Techniques; Copper; Electrodes; Indoles; Isoindoles; Limit of Detection; Nanotubes, Carbon; Pesticides; Physostigmine; Zinc | 2021 |
Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform.
Topics: Boron Compounds; Citrus sinensis; Electrochemical Techniques; Fruit and Vegetable Juices; Indoles; Isoindoles; Molecular Structure; Nanotubes, Carbon; Pesticide Residues; Pesticides; Prunus persica | 2021 |
Rapid and selective detection of dopamine in human serum using an electrochemical sensor based on zinc oxide nanoparticles, nickel phthalocyanines, and carbon nanotubes.
Topics: Ascorbic Acid; Biosensing Techniques; Dopamine; Electrochemical Techniques; Electrodes; Graphite; Humans; Indoles; Isoindoles; Nanoparticles; Nanotubes, Carbon; Nickel; Zinc Oxide | 2022 |