phosphothreonine has been researched along with phosphoric-acid* in 3 studies
3 other study(ies) available for phosphothreonine and phosphoric-acid
Article | Year |
---|---|
Unusual fragmentation of Pro-Ser/Thr-containing peptides detected in collision-induced dissociation spectra.
During collision-induced dissociation (CID)-, phosphoserine- and phosphothreonine-containing peptides frequently undergo neutral loss of phosphoric acid. Subsequent amide bond cleavage N-terminal to the site of phosphorylation results in a y ion with a mass 18 Da lower than the corresponding unmodified y fragment. We report here that when the phosphoserine or phosphothreonine is directly preceded by a proline, an unusual fragment with a mass 10 Da higher than the corresponding unmodified y ion is frequently observed. Accurate mass measurements are consistent with elimination of the phosphoric acid followed by fragmentation between the α carbon and the carbonyl group of the proline residue. We propose a cyclic oxazoline structure for this fragment. Our observation may be explained by the charge-directed S(N)2 neighboring group participation reaction proposed for the phosphoric acid elimination by Palumbo et al. [Palumbo, A. M., Tepe, J. J., Reid, G. E. Mechanistic Insights into the Multistage Gas-Phase Fragmentation Behavior of Phosphoserine- and Phosphothreonine-Containing Peptides. J. Protein Res. 7(2), 771-779 (2008)]. Considering such specific fragment ions for confirmation purposes after regular database searches may boost the confidence of peptide identifications as well as phosphorylation site assignments. Topics: Amino Acid Sequence; Databases, Protein; Molecular Sequence Data; Oligopeptides; Oxazoles; Phosphoric Acids; Phosphoserine; Phosphothreonine; Proline; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2012 |
Formation and dissociation of phosphorylated peptide radical cations.
In this study, we generated phosphoserine- and phosphothreonine-containing peptide radical cations through low-energy collision-induced dissociation (CID) of the ternary metal-ligand phosphorylated peptide complexes [Cu(II)(terpy)(p)M](·2+) and [Co(III)(salen)(p)M](·+) [(p)M: phosphorylated angiotensin III derivative; terpy: 2,2':6',2''-terpyridine; salen: N,N'-ethylenebis(salicylideneiminato)]. Subsequent CID of the phosphorylated peptide radical cations ((p)M(·+)) revealed fascinating gas-phase radical chemistry, yielding (1) charge-directed b- and y-type product ions, (2) radical-driven product ions through cleavages of peptide backbones and side chains, and (3) different degrees of formation of [M - H(3)PO(4)](·+) species through phosphate ester bond cleavage. The CID spectra of the (p)M(·+) species and their non-phosphorylated analogues featured fragment ions of similar sequence, suggesting that the phosphoryl group did not play a significant role in the fragmentation of the peptide backbone or side chain. The extent of neutral H(3)PO(4) loss was influenced by the peptide sequence and the initial sites of the charge and radical. A preliminary density functional theory study, at the B3LYP 6-311++G(d,p) level of theory, of the neutral loss of H(3)PO(4) from a prototypical model--N-acetylphosphorylserine methylamide--revealed several factors governing the elimination of neutral phosphoryl groups through charge- and radical-induced mechanisms. Topics: Cations; Free Radicals; Mass Spectrometry; Models, Molecular; Phosphopeptides; Phosphoric Acids; Phosphoserine; Phosphothreonine | 2012 |
Modelling of the gas-phase phosphate group loss and rearrangement in phosphorylated peptides.
The gas-phase dissociation of phosphorylated peptides was modelled using a combination of quantum mechanics and the Rice-Ramsperger-Kassel-Marcus theory. Potential energy surfaces and unimolecular reaction rates for several low-energy fragmentation and rearrangement pathways were estimated, and a general mechanism was proposed. The neutral loss of the phosphoric acid was mainly an outcome of the intramolecular nucleophilic substitution mechanism. The mechanism involves a nucleophilic attack of the phosphorylated amino acid N-terminal carbonyl oxygen on β-carbon, yielding a cyclic five-membered oxazoline product ion. Regardless of the proton mobility, the pathway was charge directed either by a mobile proton or by a positively charged side chain of some basic residue. Although the mechanistic aspects of the phosphate loss are not influenced by the proton mobility environment, it does affect ion abundances. Results suggest that under the mobile proton environment, the interplay between phosphoric acid neutral loss product ion and backbone cleavage fragments should occur. On the other hand, when proton mobility is limited, neutral loss product ion may predominate. The fragmentation dynamics of phosphoserine versus phosphothreonine containing peptides suggests that H(3)PO(4) neutral loss from phosphothreonine containing peptides is less abundant than that from their phosphoserine containing analogs. During the low-energy CID of phosphorylated peptides in the millisecond time range, typical for ion trap instruments, a phosphate group rearrangement may happen, resulting in an interchange between the phosphorylated and the hydroxylated residues. Unimolecular dissociation rate constants imply the low abundance of such scrambled product ions. Topics: Ions; Mass Spectrometry; Molecular Dynamics Simulation; Phosphopeptides; Phosphoric Acids; Phosphorylation; Phosphoserine; Phosphothreonine; Thermodynamics | 2011 |