phosphorus-radioisotopes has been researched along with mocimycin* in 2 studies
2 other study(ies) available for phosphorus-radioisotopes and mocimycin
Article | Year |
---|---|
Effects of elfamycins on elongation factor Tu from Escherichia coli and Staphylococcus aureus.
Six kirromycin analogs (elfamycins) were compared on the basis of their inhibition of Escherichia coli poly(U)-directed poly(Phe) synthesis and stimulation of elongation factor Tu (EF-Tu)-associated GTPase activity. The elfamycins tested were kirromycin, aurodox, efrotomycin, phenelfamycin A, unphenelfamycin, and L-681,217. The last three lack the pyridone ring present in the other elfamycins. All the elfamycins inhibited poly(U)-dependent poly(Phe) synthesis and stimulated EF-Tu-associated GTPase activity, suggesting that the pyridone ring is not essential for activity. The six elfamycins were also examined in a poly(U)-directed, poly(Phe)-synthesizing system derived from Staphylococcus aureus and had 50% inhibitory concentrations of greater than or equal to 1 mM. When S. aureus ribosomes and E. coli elongation factors were combined in a hybrid poly(Phe)-synthesizing system, aurodox produced essentially complete inhibition of poly(Phe) synthesis with a 50% inhibitory concentration of 0.13 microM. This suggests that the observed high MICs of kirromycin and its congeners in S. aureus reflect a kirromycin-resistant EF-Tu rather than permeability constraints. Topics: Anti-Bacterial Agents; Aurodox; Escherichia coli; GTP Phosphohydrolase-Linked Elongation Factors; Hybridization, Genetic; Peptide Elongation Factor Tu; Phenylalanine; Phosphorus Radioisotopes; Pyridones; Staphylococcus aureus | 1989 |
Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
Kirromycin, a new inhibitor of protein synthesis, is shown to interfere with the peptide transfer reaction by acting on elongation factor Tu (EF-Tu). All the reactions associated with this elongation factor are affected. Formation of the EF-Tu.GTP complex is strongly stimulated. Peptide bond formation is prevented only when Phe-tRNA(Phe) is bound enzymatically to ribosomes, presumably because GTP hydrolysis associated with enzymatic binding of Phe-tRNA(Phe) is not followed by release of EF-Tu.GDP from the ribosome. This antibiotic also enables EF-Tu to catalyze the binding of Phe-tRNA(Phe) to the poly(U).ribosome complex even in the absence of GTP. EF-Tu activity in the GTPase reaction is dramatically affected by kirromycin: GTP hydrolysis, which normally requires ribosomes and aminoacyl-tRNA, takes place with the elongation factor alone. This GTPase shows the same K(m) for GTP as the one dependent on Phe-tRNA(Phe) and ribosomes in the absence of the antibiotic. Ribosomes and Phe-tRNA(Phe), but not tRNA(Phe) or Ac-Phe-tRNA(Phe), stimulate the kirromycin-induced EF-Tu GTPase. These results indicate that the catalytic center of EF-Tu GTPase that is dependent upon aminoacyl-tRNA and ribosomes is primarily located on the elongation factor. In conclusion, kirromycin can substitute for GTP, aminoacyl-tRNA, or ribosomes in various reactions involving EF-Tu, apparently by affecting the allosteric controls between the sites on the EF-Tu molecule interacting with these components. Topics: Anti-Bacterial Agents; Carbon Radioisotopes; Depression, Chemical; Escherichia coli; Furans; Guanosine; Guanosine Triphosphate; Peptide Chain Elongation, Translational; Peptide Elongation Factors; Phenylalanine; Phosphoric Monoester Hydrolases; Phosphorus Radioisotopes; Pyridones; Ribosomes; RNA, Transfer; Tritium | 1974 |