phosphorus-radioisotopes and afimoxifene

phosphorus-radioisotopes has been researched along with afimoxifene* in 3 studies

Other Studies

3 other study(ies) available for phosphorus-radioisotopes and afimoxifene

ArticleYear
Site-specific tamoxifen-DNA adduct formation: lack of correlation with mutational ability in Escherichia coli.
    Biochemistry, 1999, Aug-24, Volume: 38, Issue:34

    We have mapped sites of tamoxifen adduct formation, in the lacI gene using the polymerase STOP assay, following reaction in vitro with alpha-acetoxytamoxifen and horseradish peroxidase (HRP)/H(2)O(2) activated 4-hydroxytamoxifen. For both compounds, most adduct formation occurred on guanines. However, one adenine, within a run of guanines, generated a strong polymerase STOP site with activated 4-hydroxytamoxifen, and a weaker STOP site with alpha-acetoxytamoxifen at the same location. In Escherichia coli the lac I gene reacted with 4-hydroxytamoxifen was more likely to be mutated (2 orders of magnitude) than when reacted with alpha-acetoxytamoxifen, despite the greater DNA adduct formation by alpha-acetoxytamoxifen. This correlates with the greater predicted ability of activated 4-hydroxytamoxifen adducts to disrupt DNA structure than alpha-acetoxytamoxifen adducts. For lac I reacted with activated 4-hydroxytamoxifen, a hot spot of base mutation was located in the region of the only adenosine adduct. No mutational hot spots were observed with alpha-acetoxytamoxifen. Our data clearly shows a lack of correlation between gross adduct number, as assayed by (32)P-postlabeling and mutagenic potential. These data indicate the importance of minor adduct formation in mutagenic potential and further that conclusions regarding the mutagenicity of a chemical may not be reliably derived from the gross determination of adduct formation.

    Topics: Bacteriophage T4; Base Sequence; DNA Adducts; DNA Mutational Analysis; DNA Polymerase I; DNA-Directed DNA Polymerase; Escherichia coli; Lac Operon; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutagens; Phosphorus Radioisotopes; Tamoxifen; Viral Proteins

1999
Peroxidase activation of 4-hydroxytamoxifen to free radicals detected by EPR spectroscopy.
    Free radical biology & medicine, 1997, Volume: 22, Issue:3

    4-Hydroxytamoxifen is a major metabolite of the antiestrogenic drug tamoxifen used in the treatment of women with breast cancer. 4-Hydroxytamoxifen is broken down by a horseradish peroxidase/H2O2 system very much more rapidly than tamoxifen and causes much greater DNA damage determined by 32P-postlabelling. EPR spin trapping of 4-hydroxytamoxifen reaction products in the presence of the free radical trap 5,5-dimethyl-1-pyrroline N-oxide, together with glutathione as a hydrogen donor, resulted in the generation of a species with the characteristics of the glutathione thiyl radical (aN approximately 15.3 G, aH approximately 16.2 G). Support for the creation of thiyl radicals comes from the close to stoichiometric time dependent formation of glutathione disulfide concomitant with the loss of glutathione. Similar results were obtained using 4-hydroxytoremifene but no radical formation or glutathione loss could be detected using 3-hydroxytamoxifen (droloxifene). On-line LC-ESI MS analysis of the incubation products from 4-hydroxytamoxifen has identified three products with a protonated molecular mass of 773, consistent with the formation of dimers of 4-hydroxytamoxifen. The role that radical mechanisms have in the carcinogenic effects of tamoxifen in the endometrium or other target organs of women taking this drug remains to be established.

    Topics: DNA Adducts; Electron Spin Resonance Spectroscopy; Free Radicals; Glutathione; Glutathione Disulfide; Horseradish Peroxidase; Hydrogen Peroxide; Macromolecular Substances; Oxidation-Reduction; Phosphorus Radioisotopes; Spin Labels; Tamoxifen

1997
Tamoxifen: evidence by 32P-postlabeling and use of metabolic inhibitors for two distinct pathways leading to mouse hepatic DNA adduct formation and identification of 4-hydroxytamoxifen as a proximate metabolite.
    Carcinogenesis, 1994, Volume: 15, Issue:10

    Exposure to pentachlorophenol (PCP) strongly intensifies the formation of mouse hepatic DNA adducts elicited by oral administration of tamoxifen (TAM), as previously shown by 32P-postlabeling. To explain this effect, PCP was proposed to interfere with the detoxication by sulfate conjugation of an as yet unidentified hydroxylated proximate TAM metabolite. A comparison of the present and earlier results shows that the hepatic TAM adduct pattern in female ICR mice depended on the route of administration of TAM (120 mumol/kg), with oral administration primarily eliciting formation of more polar adducts (termed group I adducts), while after i.p. administration less polar adducts (group II) predominated over group I adducts by a factor of 17.5. All these adducts were also formed in female Sprague-Dawley rats after i.p. dosing with TAM, but total adduct levels were 3.5- to 5-fold higher than in mice. After four daily i.p. treatments, TAM adducts accumulated in mouse liver DNA in a non-linear fashion. Adduct levels were 30-50 times lower in mouse kidney and lung than in liver. The phenolic metabolite 4-hydroxy TAM (120 mumol/kg) exclusively led to formation of polar (group I) hepatic adducts, and this process was stimulated 8-fold by co-administration of PCP (75 mumol/kg). Co-administration of PCP with the parent compound led to an 11-fold enhancement of group I adduct formation; simultaneously, levels of group II adducts were suppressed 6-fold. Another inhibitor of sulfate conjugation, 2,6-dichloro-4-nitrophenol, unlike PCP, had no effect on group I adducts, but it reduced group II adduct formation 2.2-fold. The PCP metabolite 2,3,5,6-tetrachlorohydroquinone (75 mumol/kg) did not significantly affect any major TAM adduct, suggesting that PCP itself was the active compound. Similar to group II TAM adducts, the formation of hepatic safrole-DNA adducts was inhibited in female ICR mice by both sulfotransferase inhibitors, consistent with the proposal that metabolic alpha-hydroxylation of the ethyl group of TAM followed by sulfate conjugation represented a mechanism of TAM activation. On the other hand, the strong intensification of group I adducts by PCP and the lack of this effect by 2,6-dichloro-4-nitrophenol suggested that inhibition of sulfate conjugation may not have been the primary mechanism underlying the intensification of group I adducts formed from TAM or 4-hydroxy TAM. The results presented herein demonstrate conclusively that TAM was activated to DNA-re

    Topics: Animals; DNA; DNA Adducts; Female; Hydroquinones; Isotope Labeling; Kidney; Liver; Lung; Mice; Mice, Inbred ICR; Pentachlorophenol; Phosphorus Radioisotopes; Rats; Rats, Sprague-Dawley; Tamoxifen

1994