phosphorus-radioisotopes and 8-azidoadenosine-diphosphate

phosphorus-radioisotopes has been researched along with 8-azidoadenosine-diphosphate* in 5 studies

Other Studies

5 other study(ies) available for phosphorus-radioisotopes and 8-azidoadenosine-diphosphate

ArticleYear
Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1).
    The Journal of biological chemistry, 2006, Jan-06, Volume: 281, Issue:1

    The multidrug resistance protein 1 (MRP1) mediates drug and organic anion efflux across the plasma membrane. The 17 transmembrane (TM) helices of MRP1 are linked by extracellular and cytoplasmic (CL) loops of various lengths and two cytoplasmic nucleotide binding domains. In this study, three basic residues clustered at the predicted TM15/CL7 interface were investigated for their role in MRP1 expression and activity. Thus, Arg1138, Lys1141, and Arg1142 were replaced with residues of the same or opposite charge, expressed in human embryonic kidney cells, and the properties of the mutant proteins were assessed. Neither Glu nor Lys substitutions of Arg1138 and Arg1142 affected MRP1 expression; however, all four mutants showed a decrease in organic anion transport with a relatively greater decrease in leukotriene C4 and glutathione transport. These mutations also modulated MRP1 ATPase activity as reflected by a decreased vanadate-induced trapping of 8-azido-[32P]ADP. Mutation of Lys1141 to either Glu or Arg reduced MRP1 expression, and routing to the plasma membrane was impaired. However, only the Glu-substituted Lys1141 mutant showed a decrease in organic anion transport, and this was associated with decreased substrate binding and vanadate-induced trapping of 8-azido-ADP. These studies identified a cluster of basic amino acids likely at the TM15/CL7 interface as a region important for both MRP1 expression and activity and demonstrated that each of the three residues plays a distinct role in the substrate specificity and catalytic activity of the transporter.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Amino Acid Sequence; Arginine; Azides; Catalytic Domain; Cell Line; Cytosol; Estradiol; Humans; Kidney; Leukotriene C4; Lysine; Molecular Sequence Data; Multidrug Resistance-Associated Proteins; Mutagenesis, Site-Directed; Phosphorus Radioisotopes; Protein Structure, Secondary; Protein Structure, Tertiary; Structure-Activity Relationship; Tritium; Vanadates

2006
Functionally similar vanadate-induced 8-azidoadenosine 5'-[alpha-(32)P]Diphosphate-trapped transition state intermediates of human P-glycoprotin are generated in the absence and presence of ATP hydrolysis.
    The Journal of biological chemistry, 2001, Jun-15, Volume: 276, Issue:24

    P-glycoprotein (Pgp) is an ATP-dependent drug efflux pump whose overexpression confers multidrug resistance to cancer cells. Pgp exhibits a robust drug substrate-stimulable ATPase activity, and vanadate (Vi) blocks this activity effectively by trapping Pgp nucleotide in a non-covalent stable transition state conformation. In this study we compare Vi-induced [alpha-(32)P]8-azido-ADP trapping into Pgp in the presence of [alpha-(32)P]8-azido-ATP (with ATP hydrolysis) or [alpha-(32)P]8-azido-ADP (without ATP hydrolysis). Vi mimics P(i) to trap the nucleotide tenaciously in the Pgp.[alpha-(32)P]8-azido-ADP.Vi conformation in either condition. Thus, by using [alpha-(32)P]8-azido-ADP we show that the Vi-induced transition state of Pgp can be generated even in the absence of ATP hydrolysis. Furthermore, half-maximal trapping of nucleotide into Pgp in the presence of Vi occurs at similar concentrations of [alpha-(32)P]8-azido-ATP or [alpha-(32)P]8-azido-ADP. The trapped [alpha-(32)P]8-azido-ADP is almost equally distributed between the N- and the C-terminal ATP sites of Pgp in both conditions. Additionally, point mutations in the Walker B domain of either the N- (D555N) or C (D1200N)-terminal ATP sites that arrest ATP hydrolysis and Vi-induced trapping also show abrogation of [alpha-(32)P]8-azido-ADP trapping into Pgp in the absence of hydrolysis. These data suggest that both ATP sites are dependent on each other for function and that each site exhibits similar affinity for 8-azido-ATP (ATP) or 8-azido-ADP (ADP). Similarly, Pgp in the transition state conformation generated with either ADP or ATP exhibits drastically reduced affinity for the binding of analogues of drug substrate ([(125)I]iodoarylazidoprazosin) as well as nucleotide (2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate). Analyses of Arrhenius plots show that trapping of Pgp with [alpha-(32)P]8-azido-ADP (in the absence of hydrolysis) displays an approximately 2.5-fold higher energy of activation (152 kJ/mol) compared with that observed when the transition state intermediate is generated through hydrolysis of [alpha-(32)P]8-azido-ATP (62 kJ/mol). In aggregate, these results demonstrate that the Pgp.[alpha-(32)P]8-azido-ADP (or ADP).Vi transition state complexes generated either in the absence of or accompanying [alpha-(32)P]8-azido-ATP hydrolysis are functionally indistinguishable.

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Affinity Labels; Animals; ATP Binding Cassette Transporter, Subfamily B; Azides; Binding Sites; Cell Line; Cell Membrane; HeLa Cells; Humans; Hydrolysis; Insecta; Kinetics; Phosphorus Radioisotopes; Recombinant Proteins; Thermodynamics; Transfection; Vanadates

2001
Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids.
    Molecular pharmacology, 2001, Volume: 59, Issue:5

    The 190-kDa phosphoglycoprotein multidrug resistance protein 1 (MRP1) (ABCC1) confers resistance to a broad spectrum of anticancer drugs and also actively transports certain xenobiotics with reduced glutathione (GSH) (cotransport) as well as conjugated organic anions such as leukotriene C(4) (LTC(4)). In the present study, we have investigated a series of bioflavonoids for their ability to influence different aspects of MRP1 function. Most flavonoids inhibited MRP1-mediated LTC(4) transport in membrane vesicles and inhibition by several flavonoids was enhanced by GSH. Five of the flavonoids were competitive inhibitors of LTC(4) transport (K(i), 2.4-21 microM) in the following rank order of potency: kaempferol > apigenin (+ GSH) > quercetin > myricetin > naringenin (+ GSH). These flavonoids were less effective inhibitors of 17beta-estradiol 17beta-(D-glucuronide) transport. Moreover, their rank order of inhibitory potency for this substrate differed from that for LTC(4) transport inhibition but correlated with their relative lipophilicity. Several flavonoids, especially naringenin and apigenin, markedly stimulated GSH transport by MRP1, suggesting they may be cotransported with this tripeptide. Quercetin inhibited the ATPase activity of purified reconstituted MRP1 but stimulated vanadate-induced trapping of 8-azido-alpha-[(32)P]ADP by MRP1. In contrast, kaempferol and naringenin stimulated both MRP1 ATPase activity and trapping of ADP. In intact MRP1-overexpressing cells, quercetin reduced vincristine resistance from 8.9- to 2.2-fold, whereas kaempferol and naringenin had no effect. We conclude that dietary flavonoids may modulate the organic anion and GSH transport, ATPase, and/or drug resistance-conferring properties of MRP1. However, the activity profile of the flavonoids tested differed from one another, suggesting that at least some of these compounds may interact with different sites on the MRP1 molecule.

    Topics: Adenosine Diphosphate; Adenosine Triphosphatases; Antineoplastic Agents, Phytogenic; ATP-Binding Cassette Transporters; Azides; Binding, Competitive; Biological Transport; Cell Division; Chromatography, High Pressure Liquid; Drug Interactions; Estradiol; Estrogen Antagonists; Flavanones; Flavonoids; Glutathione; HeLa Cells; Humans; Kaempferols; Kinetics; Leukotriene C4; Multidrug Resistance-Associated Proteins; Phosphorus Radioisotopes; Quercetin; Transfection; Tritium; Vanadates; Vincristine

2001
Identification of amino acid residues photolabeled with 2-azido[alpha-32P]adenosine diphosphate in the beta subunit of beef heart mitochondrial F1-ATPase.
    Biochemistry, 1986, Jul-29, Volume: 25, Issue:15

    When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido[alpha-32P]adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled [Dalbon, P., Boulay, F., & Vignais, P. V. (1985) FEBS Lett. 180, 212-218]. The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.

    Topics: Adenosine Diphosphate; Amino Acid Sequence; Amino Acids; Animals; Azides; Cattle; Cyanogen Bromide; Endopeptidases; Macromolecular Substances; Mitochondria, Heart; Peptide Fragments; Phosphorus Radioisotopes; Proton-Translocating ATPases; Serine Endopeptidases; Trypsin

1986
The number and localisation of adenine nucleotide-binding sites in beef-heart mitochondrial ATPase (F1) determined by photolabelling with 8-azido-ATP and 8-azido-ADP.
    Biochimica et biophysica acta, 1980, Dec-03, Volume: 593, Issue:2

    1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed. 2. In the presence of Mg2+ the nitreno-ATP is bound to both the alpha and beta subunits, mainly (63%) to the alpha subunits. 3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the alpha and 2 mol to the beta subunits. 4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the alpha-subunits hinders binding to the beta subunits. 5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1. 6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.

    Topics: Adenine Nucleotides; Adenosine Diphosphate; Adenosine Triphosphatases; Adenosine Triphosphate; Animals; Azides; Binding Sites; Cattle; Electrophoresis; Magnesium; Mitochondria, Heart; Phosphorus Radioisotopes; Proton-Translocating ATPases

1980