phosphorus-radioisotopes and 2-azidoadenosine-5--triphosphate

phosphorus-radioisotopes has been researched along with 2-azidoadenosine-5--triphosphate* in 2 studies

Other Studies

2 other study(ies) available for phosphorus-radioisotopes and 2-azidoadenosine-5--triphosphate

ArticleYear
Catalytic activity of an isolated domain of Na,K-ATPase expressed in Escherichia coli.
    Biophysical journal, 1999, Volume: 77, Issue:1

    Fusion proteins of glutathione-S-transferase and fragments from the large cytoplasmic domain of the sheep Na,K-ATPase alpha1-subunit were expressed in Escherichia coli. The Na,K-ATPase sequences begin at Ala345 and terminate at either Arg600 (DP600f), Thr610 (DP610f), Gly731 (DP731f), or Glu779 (DP779f). After affinity purification on glutathione-Sepharose, the fusion proteins were labeled with [alpha-32P]-2-N3-ATP, and incorporation of the radiolabel into the fusion proteins was measured by scintillation counting after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kd values of 220-290 microM for 2-N3-ATP binding to the fusion proteins were obtained from the photolabeling experiments. Approximately 1 mol of 2-N3-ATP was calculated to be incorporated per mole of fusion protein after correction for photochemical incorporation efficiency. Labeling of all of the fusion proteins by 25 microM 2-N3-ATP was reduced in the presence of MgATP, Na2ATP, MgCl2, 2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and p-nitrophenylphosphate, and Ki values of 2-11 mM for Na2ATP, 0.2-5 mM for MgCl2, 0.1-5 mM for MgATP, and 20-300 microM for p-nitrophenylphosphate were calculated for these ligands. All of the fusion proteins catalyze the hydrolysis of p-nitrophenylphosphate. The reaction requires MgCl2 and is inhibited by inorganic phosphate, which is similar to the hydrolysis of p-nitrophenylphosphate by native Na,K-ATPase. Based on these observations, it appears that the soluble fragments from the large cytoplasmic domain of Na,K-ATPase expressed in bacterial cells are folded in an E2-like conformation and are likely to retain much of the native structure.

    Topics: Adenosine Triphosphate; Affinity Labels; Animals; Azides; Binding Sites; Enzyme Inhibitors; Escherichia coli; Kidney; Ligands; Nitrophenols; Nucleotides; Organophosphorus Compounds; Peptide Fragments; Phosphorus Radioisotopes; Protein Conformation; Protein Folding; Recombinant Fusion Proteins; Sheep; Sodium-Potassium-Exchanging ATPase

1999
2- and 8-azido photoaffinity probes. 2. Studies on the binding process of 2-5A synthetase by photosensitive ATP analogues.
    Biochemistry, 1988, Nov-29, Volume: 27, Issue:24

    The photoaffinity probes [gamma-32P]2-azidoATP (2-N3ATP) and [alpha-32P]8-azido-ATP (8-N3ATP) were used to investigate the binding of ATP to highly purified 2-5A synthetase. 2-N3ATP and 8-N3ATP are substrates for 2-5A synthetase [Suhadolnik, R.J., Karikó, K., Sobol, R.W., Jr., Li, S.W., Reichenbach, N.L., & Haley, B.E., preceding paper]. In this study we show that 2- and 8-N3ATP are competitive inhibitors of the enzymatic conversion of ATP to 2-5A. Ultraviolet irradiation results in the photoinsertion of 2-N3ATP and 8-N3ATP into the enzyme. The covalent photoinsertion of [alpha-32P]8-N3ATP into the 2-5A synthetase is proportional to the inactivation of the enzyme as UV irradiation is increased. Photolabeling of 2-5A synthetase is saturated at 1.5 mM 2-N3ATP and 2.0 mM 8-N3ATP. Computer analysis of the curvilinear Scatchard plots of the 2-5A synthetase suggests the presence of high-affinity and low-affinity binding sites that may correspond to the acceptor and the 2'-adenylation sites of the enzyme. The competition of nucleotides for the covalent photoinsertion of 8-N3ATP into the binding site(s) of the synthetase was as follows: ATP greater than 2'dATP = 3'dATP greater than CTP greater than ITP greater than AMP greater than NAD+ greater than UTP greater than UMP greater than CMP. Photoinsertion of 8-N3ATP into 2-5A synthetase increases with the addition of poly(rI).poly(rC).(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: 2',5'-Oligoadenylate Synthetase; Adenosine Triphosphate; Affinity Labels; Azides; Binding, Competitive; Diphosphates; Kinetics; Phosphorus Radioisotopes; Photochemistry; Ultraviolet Rays

1988