phosphoramidon and leupeptin

phosphoramidon has been researched along with leupeptin* in 3 studies

Other Studies

3 other study(ies) available for phosphoramidon and leupeptin

ArticleYear
Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation.
    Journal of molecular and cellular cardiology, 2011, Volume: 51, Issue:1

    Designer natriuretic peptides (NPs) represent an active area of drug development. In canine and human studies, the designer natriuretic peptide CD-NP demonstrated more desirable therapeutic potential than recombinant B-type NP (BNP), which is known as nesiritide and is approved for treatment of acute decompensated heart failure. However, why CD-NP is more effective than BNP is not known. We previously reported that CD-NP is a poorer activator of human guanylyl cyclase-A (GC-A) and a better activator of human guanylyl cyclase-B than BNP. Here, guanylyl cyclase bioassays were used to compare the susceptibility of CD-NP verses ANP, BNP, CNP and DNP to inactivation by human kidney membranes. The half time (t(1/2)) for CD-NP inactivation was increased by factors of 13, 3 and 4 compared to ANP, BNP and CNP, respectively, when measured in the same assay. Surprisingly, DNP failed to undergo complete inactivation and was the most degradation resistant of the peptides tested. The neutral endopeptidase (NEP) inhibitor, phosphoramidon, blocked inactivation of CNP and CD-NP, but not BNP or DNP. In contrast, the general serine and cysteine protease inhibitor, leupeptin, completely blocked the degradation of BNP and CD-NP, but did not block CNP inactivation unless phosphoramidon was included in the assay. Thus, NPs with shorter carboxyl tails (ANP and CNP) are degraded by phosphoramidon-sensitive proteases and NPs with extended carboxyl tails (BNP, DNP and CD-NP) are resistant to NEP degradation and degraded by leupeptin-sensitive proteases. We conclude that DNP and CD-NP are highly resistant to proteolysis and that proteolytic resistance contributes to the beneficial cardiovascular properties of CD-NP. We suggest that this property may be exploited to increase the half-life of NP-based drugs.

    Topics: Atrial Natriuretic Factor; Cells, Cultured; Cysteine Proteinase Inhibitors; Elapid Venoms; Glycopeptides; HEK293 Cells; Humans; Hydrolysis; Intercellular Signaling Peptides and Proteins; Kidney; Leupeptins; Natriuretic Peptide, Brain; Natriuretic Peptide, C-Type; Neprilysin; Peptides; Receptors, Atrial Natriuretic Factor; Serine Proteinase Inhibitors

2011
Effect of neutral endopeptidase inhibition on substance-P-induced increase in short-circuit current of canine cultured tracheal epithelium.
    International archives of allergy and applied immunology, 1991, Volume: 95, Issue:2-3

    We studied the effect of substance P (SP) on the electric properties of cultured canine tracheal epithelium and its possible modulation by neutral endopeptidase (NEP) by Ussing's short-circuited technique in vitro. Addition of SP (5 x 10(-6) M) to the mucosal side increased short-circuit current (SCC) from 5.1 +/- 0.9 to 10.3 +/- 2.2 microA/cm2 (mean +/- SE; p less than 0.01), which was accompanied by increases in transepithelial potential difference and conductance. The effect of the mucosal SP on SCC was dose-dependent, with the maximal increase from the baseline value being 5.8 +/- 1.0 microA/cm2 observed at 5 x 10(-5) M. The NEP inhibitor phosphoramidon (10(-5) M) did not affect these responses. On the other hand, SCC was not altered by the addition of SP to the submucosal side. However, it was increased dose-dependently in the presence of phosphoramidon (10(-5) M) but not in the presence of captopril, bestatin or leupeptin. This stimulatory effect of submucosal SP was abolished by furosemide, diphenylamine-2-carboxylate and Cl-free medium, but not by amiloride. These results suggest that SP may selectively stimulate Cl secretion across the airway epithelium and that this effect may be modulated by submucosal NEP.

    Topics: Amiloride; Animals; Anti-Bacterial Agents; Biological Transport, Active; Captopril; Cells, Cultured; Complement C1; Dogs; Dose-Response Relationship, Drug; Electric Conductivity; Female; Furosemide; Glycopeptides; In Vitro Techniques; Ion Channel Gating; Leucine; Leupeptins; Male; Membrane Potentials; Neprilysin; Substance P; Time Factors; Trachea

1991
Atrial natriuretic factor inhibits ciliary motility in cultured rabbit tracheal epithelium.
    The American journal of physiology, 1991, Volume: 260, Issue:2 Pt 1

    To study the effect of atrial natriuretic factor (ANF) on airway ciliary motility, we measured ciliary beat frequency by a photoelectric method in response to ANF in cultured tracheal epithelial cells from rabbits. Addition of ANF but not [Tyr8]ANF-(5-27) decreased ciliary beat frequency in a dose-dependent fashion; the maximal decrease from the baseline value was 24.1 +/- 1.5% (+/- SE, P less than 0.001), and a half-maximal inhibitory concentration (IC50) was 3 x 10(-12) M. Inhibition of neutral endopeptidase activity by phosphoramidon (10(-6) M) or thiorphan (10(-6) M) potentiated the effect of ANF so that the dose-response curve for ANF was shifted to lower concentrations by approximately 0.5 log units (P less than 0.05, in each case). The inhibition of ciliary motility induced by ANF was not affected by the blockade of arachidonic acid metabolism with indomethacin, piroxicam, or nordihydroguaiaretic acid, but it was blocked by methylene blue, a soluble guanylate cyclase inhibitor, and was potentiated by M & B 22948, a guanosine 3',5'-cyclic monophosphate (cGMP) phosphodiesterase inhibitor. The intracellular cGMP levels were increased by ANF, an effect that was further potentiated by phosphoramidon or thiorphan. These results suggest that ANF inhibits ciliary motility presumably through a guanylate cyclase-dependent regulatory pathway and that neutral endopeptidase may play a role in modulating the ANF effect on airway mucociliary transport function.

    Topics: Animals; Atrial Natriuretic Factor; Captopril; Cells, Cultured; Cilia; Enzyme Inhibitors; Epithelium; Glycopeptides; Indomethacin; Kinetics; Leucine; Leupeptins; Male; Masoprocol; Methylene Blue; Movement; Piroxicam; Purinones; Rabbits; Thiorphan; Trachea

1991