phosphoramidon and icatibant

phosphoramidon has been researched along with icatibant* in 7 studies

Other Studies

7 other study(ies) available for phosphoramidon and icatibant

ArticleYear
Neurogenic plasma leakage in mouse airways.
    British journal of pharmacology, 1999, Volume: 126, Issue:2

    1. This study sought to determine whether neurogenic inflammation occurs in the airways by examining the effects of capsaicin or substance P on microvascular plasma leakage in the trachea and lungs of male pathogen-free C57BL/6 mice. 2. Single bolus intravenous injections of capsaicin (0.5 and 1 micromol kg(-1), i.v.) or substance P (1, 10 and 37 nmol kg(-10, i.v.) failed to induce significant leakage in the trachea, assessed as extravasation of Evans blue dye, but did induce leakage in the urinary bladder and skin. 3. Pretreatment with captopril (2.5 mg kg(-1), i.v.), a selective inhibitor of angiotensin converting enzyme (ACE), either alone or in combination with phosphoramidon (2.5 mg kg(-1), i.v.), a selective inhibitor of neutral endopeptidase (NEP), increased baseline leakage of Evans blue in the absence of any exogenous inflammatory mediator. The increase was reversed by the bradykinin B2 receptor antagonist Hoe 140 (0.1 mg kg(-1), i.v.). 4. After pretreatment with phosphoramidon and captopril, capsaicin increased the Evans blue leakage above the baseline in the trachea, but not in the lung. This increase was reversed by the tachykinin (NK1) receptor antagonist SR 140333 (0.7 mg kg(-1), i.v.), but not by the NK2 receptor antagonist SR 48968 (1 mg kg(-1), i.v.). 5. Experiments using Monastral blue pigment as a tracer localized the leakage to postcapillary venules in the trachea and intrapulmonary bronchi, although the labelled vessels were less numerous in mice than in comparably treated rats. Blood vessels of the pulmonary circulation were not labelled. 6. We conclude that neurogenic inflammation can occur in airways of pathogen-free mice, but only after the inhibition of enzymes that normally degrade inflammatory peptides. Neurogenic inflammation does not involve the pulmonary microvasculature.

    Topics: Adrenergic beta-Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Benzamides; Blood Vessels; Bradykinin; Bradykinin Receptor Antagonists; Capillary Permeability; Capsaicin; Captopril; Dose-Response Relationship, Drug; Evans Blue; Glycopeptides; Lung; Male; Mice; Mice, Inbred C57BL; Neurokinin-1 Receptor Antagonists; Piperidines; Protease Inhibitors; Quinuclidines; Receptors, Neurokinin-2; Skin; Specific Pathogen-Free Organisms; Substance P; Trachea; Urinary Bladder

1999
Amlodipine promotes kinin-mediated nitric oxide production in coronary microvessels of failing human hearts.
    The American journal of cardiology, 1999, Aug-19, Volume: 84, Issue:4A

    Recently, we found that amlodipine can release nitric oxide (NO) from canine coronary microvessels, which raises the question of whether amlodipine can also promote coronary NO production in failing human hearts. The goal of this study was to define the effect of amlodipine on NO production in failing human hearts and to determine the role of kinins in the control of NO production induced by amlodipine. Six explanted human hearts with end-stage heart failure were obtained immediately at transplant surgery. Coronary microvessels were isolated as previously described, and nitrite, the stable metabolite of NO in aqueous solution, was measured using the Griess Reaction. Amlodipine (10(-10) to 10(-5) mol/L) significantly increased nitrite production in coronary microvessels in a dose-dependent manner. The increase in nitrite in response to the highest dose of amlodipine (79%) was similar in magnitude to either that of the angiotensin-converting enzyme inhibitor ramiprilat (74%) or the neutral endopeptidase inhibitors phosphoramidon (61%) and thiorphan (72%). Interestingly, the increase in nitrite production induced by amlodipine was entirely abolished by N(omega)-nitro-L-arginine methyl ester and also HOE-140 (a bradykinin-2 antagonist) and dichloroisocoumarin (a serine protease inhibitor that blocks kallikrein activity). These results indicate that amlodipine can promote coronary NO production in failing human hearts and that this effect is dependent on a kinin-mediated mechanism.

    Topics: Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Bradykinin; Bradykinin Receptor Antagonists; Calcium Channel Blockers; Cardiac Output, Low; Coronary Vessels; Dose-Response Relationship, Drug; Glycopeptides; Humans; Metalloendopeptidases; Microcirculation; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitrites; Quinine; Ramipril; Serine Proteinase Inhibitors; Thiorphan

1999
Neutral endopeptidase and angiotensin-converting enzyme inhibitors increase nitric oxide production in isolated canine coronary microvessels by a kinin-dependent mechanism.
    Journal of cardiovascular pharmacology, 1998, Volume: 31, Issue:4

    Bradykinin is a substrate for both neutral endopeptidase 24.11 (NEP) and angiotensin-converting enzyme (ACE). Our previous studies showed that ACE inhibitors can stimulate nitric oxide production in coronary microvessels, which is mediated by local kinins. Whether inhibition of NEP also can affect local vascular NO production has not been established. To determine the role of NEP in the control of NO production, coronary microvessels were isolated from seven mongrel dogs. Two NEP inhibitors, phosphoramidon and thiorphan, and an ACE inhibitor, ramiprilat, were used. Nitrite, the metabolite of NO in aqueous solution, was measured by using the Griess reaction. Phosphoramidon and thiorphan (10(-6) M) increased nitrite production from 80 +/- 6 to 136 +/- 6 and 144 +/- 7 pmol/mg, respectively. Ramiprilat (10(-8) M) increased nitrite production from 78 +/- 6 to 155 +/- 7 pmol/mg wet weight. The effect of these agents on nitrite release was blocked by L-NAME, which inhibits NO synthase, HOE-140, which blocks bradykinin B2-receptor, and dichloroisocoumarin, which blocks kinin-forming enzymes. These results clearly indicate that inhibition of kinin metabolism by using neutral endopeptidase inhibitors increases NO production from coronary microvessels. Thus neutral endopeptidase plays an important role in local kinin-modulated NO production in the coronary microcirculation and NEP inhibitors may be useful clinical tools in treatment of cardiovascular disease.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Coronary Vessels; Coumarins; Dogs; Drug Interactions; Glycopeptides; In Vitro Techniques; Isocoumarins; Neprilysin; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Protease Inhibitors; Ramipril; Serine Proteinase Inhibitors; Thiorphan

1998
Mechanism of irritant-induced cough: studies with a kinin antagonist and a kallikrein inhibitor.
    Lung, 1996, Volume: 174, Issue:4

    It has been suggested that bradykinin may play a role in stimulating cough in at least one pathological condition in humans. We have employed an animal model to investigate the possible role of this peptide in irritant-induced cough. The kinin antagonist Hoe 140 and codeine both produced dose-related inhibition of cough responses to inhalation of citric acid or bradykinin aerosols by conscious guinea pigs. The selective tissue kallikrein inhibitor CH694 inhibited cough caused by citric acid but not by bradykinin. Indomethacin pretreatment attenuated the responses to both stimuli as did phosphoramidon. It is concluded that cough produced by citric acid inhalation may be mediated, at least in part, by generation of kinins; secondary to this, a release of prostanoids also appears to participate in the response.

    Topics: Administration, Inhalation; Animals; Bradykinin; Bradykinin Receptor Antagonists; Citric Acid; Codeine; Cough; Dipeptides; Dose-Response Relationship, Drug; Glycopeptides; Guinea Pigs; Indomethacin; Irritants; Kallikreins; Kinins; Male; Protease Inhibitors

1996
Tachykinins and kinins in antigen-evoked plasma extravasation in guinea-pig nasal mucosa.
    European journal of pharmacology, 1994, Aug-11, Volume: 261, Issue:1-2

    The plasma extravasation evoked by instillation of 5% ovalbumin in the nasal mucosa of sensitized guinea-pigs was potentiated by the neutral endopeptidase inhibitor, phosphoramidon, and was reduced by the tachykinin NK1 receptor antagonist, CP-96,345. The bradykinin B2 receptor antagonist, HOE 140, also reduced the plasma extravasation evoked by the antigen. The combination of HOE 140 and CP-96,345 did not increase further the inhibition caused by HOE 140 alone. Plasma extravasation evoked by instillation of capsaicin was abolished by CP-96,345. HOE 140 blocked and CP-96,345 markedly reduced plasma extravasation caused by instillation of bradykinin. Plasma extravasation evoked by instillation of substance P was not affected by HOE 140. We conclude that antigen challenge causes plasma extravasation in the nasal mucosa of sensitized guinea-pigs, an effect that is due in part to the release of tachykinins from sensory nerve endings. Our evidence suggests that tachykinin release in response to antigen is provoked mainly by the release of kinins.

    Topics: Animals; Biphenyl Compounds; Bradykinin; Capillary Permeability; Capsaicin; Evans Blue; Glycopeptides; Guinea Pigs; Hypnotics and Sedatives; In Vitro Techniques; Kinins; Male; Nasal Mucosa; Nerve Endings; Neurokinin-1 Receptor Antagonists; Neurons, Afferent; Ovalbumin; Protease Inhibitors; Substance P; Tachykinins

1994
Role of kinins in anaphylactic-induced bronchoconstriction mediated by tachykinins in guinea-pigs.
    British journal of pharmacology, 1994, Volume: 113, Issue:2

    1. In the present study, we have investigated the role of kinins in allergen-induced bronchoconstriction. 2. Anaesthetized guinea-pigs were sensitized to ovalbumin, ventilated artificially, pretreated with atropine (1.4 mumol kg-1, i.v.) and total pulmonary resistance (RL) measured. In preliminary studies in the presence of the neutral endopeptidase inhibitor, phosphoramidon (4.5 mumol kg-1, i.v.), the bradykinin B2 receptor antagonist Hoe 140 (0.1 mumol kg-1, i.v.) completely abolished the increase in RL following aerosolized bradykinin (1 mM, 40 breaths), but had no effect on the increase in RL following aerosolized neurokinin A (NKA, 10 microM, 40 breaths). On the other hand, a combination of the NK1 (CP-96,345, 2 mumol kg-1, i.v.) and NK2 (SR 48968, 0.3 mumol kg-1, i.v.) tachykinin receptor antagonists abolished completely the increase in RL produced by NKA and partially inhibited the increase in RL produced by bradykinin. These results confirm previous studies that suggest that bradykinin induces the release of tachykinins from sensory nerves in guinea-pig airways. 3. Aerosolized ovalbumin (0.5%, 5 breaths) increased RL in sensitized guinea-pigs pretreated with atropine (1.4 mmol kg-1, i.v.), an effect that began within 2 min and reached a maximum within 5 min; RL remained above baseline at 20 min. Pretreatment with the bradykinin B2 receptor antagonist, Hoe 140, decreased the bronchoconstrictor effect of ovalbumin markedly at 10 to 20 min. In the presence of phosphoramidon (4.5 mumol kg-1, i.v.) the inhibition induced by Hoe 140 was apparent earlier and remained over the 20 min period of study. 4. Pretreatment with a combination of NK1 (CP-96,345) and NK2 (SR 48968) tachykinin receptor antagonists also markedly inhibited ovalbumin-induced bronchoconstriction; addition of the bradykinin B2 receptor antagonist to the NK1 and NK2 tachykinin receptor antagonists had no additional inhibitory effect on antigen-induced bronchoconstriction.5. These findings confirm that activation of sensory nerves to release tachykinins in guinea-pig airways contribute to antigen-induced bronchoconstriction, and provide evidence that tachykinin release is due to kinins generated during the allergic response.

    Topics: Adrenergic beta-Antagonists; Airway Resistance; Anaphylaxis; Animals; Benzamides; Biphenyl Compounds; Bradykinin; Bronchoconstriction; Glycopeptides; Guinea Pigs; Hypnotics and Sedatives; Kinins; Male; Neprilysin; Neurokinin-1 Receptor Antagonists; Piperidines; Receptors, Neurokinin-2; Tachykinins

1994
Bradykinin-induced contraction of human peripheral airways mediated by both bradykinin beta 2 and thromboxane prostanoid receptors.
    American journal of respiratory and critical care medicine, 1994, Volume: 150, Issue:4

    Bradykinin (BK) induces bronchoconstriction in asthmatic but not in normal individuals. Studies in vivo in the human suggest that BK causes cholinergic nerve activation, release of prostanoids, and local axon reflexes with release of tachykinins in the airways. To determine the mechanisms of BK-induced airway narrowing, we investigated the effects of epithelium removal, inhibition of the enzymes neutral endopeptidase (NEP) and cyclooxygenase, and blockade of neural conductance with tetrodotoxin (TTX) on BK-induced responses of human isolated peripheral airways. Responses to BK were recorded from airways with spontaneous intrinsic tone and from airways precontracted with methacholine. Furthermore, we measured the BK-induced release of the prostanoids PGE2, PGI2, and TXA2 from airways with and without epithelium in the absence and presence of indomethacin by radioimmunoassay. Finally, we examined the effect of the bradykinin beta 2 receptor antagonist Hoe 140 and the thromboxane prostanoid (TP) receptor blocking drug GR32191 on BK-induced responses. BK contracted intact and epithelium-denuded airways with spontaneous intrinsic tone, whereas precontracted airways either relaxed or contracted to BK. Removal of the epithelium increased the sensitivity to BK sevenfold without changing the direction of the response. The NEP inhibitor phosphoramidon tended to increase the sensitivity to BK (NS) and did not change the direction of the response. Both contractile and relaxation responses to BK and the release of the prostanoids PGE2, PGI2, and TXA2 by the airway tissues were largely inhibited by indomethacin, whereas TTX had no effect. PGE2, PGI2, and TXA2 were released by both intact and epithelium-denuded airways.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Aged; Biphenyl Compounds; Bradykinin; Bradykinin Receptor Antagonists; Bronchi; Bronchoconstriction; Dose-Response Relationship, Drug; Drug Interactions; Epithelium; Female; Glycopeptides; Heptanoic Acids; Humans; In Vitro Techniques; Indomethacin; Male; Methacholine Chloride; Middle Aged; Protease Inhibitors; Receptors, Bradykinin; Receptors, Thromboxane

1994