phosphoramidon and dynorphin-(1-8)

phosphoramidon has been researched along with dynorphin-(1-8)* in 3 studies

Other Studies

3 other study(ies) available for phosphoramidon and dynorphin-(1-8)

ArticleYear
Effects of peptidase inhibitors on anti-nociceptive action of dynorphin-(1-8) in rats.
    Naunyn-Schmiedeberg's archives of pharmacology, 2000, Volume: 361, Issue:3

    Previous in vitro studies showed that the degradation of dynorphin-(1-8) [dyn-(1-8)] by cerebral membrane preparations is almost completely prevented by a mixture of three peptidase inhibitors (PIs), amastatin, captopril and phosphoramidon. In the present investigations, effects of the three PIs on the anti-nociception induced by the intra-third-ventricular (i.t.v.) administration of dyn-(1-8) were examined. The inhibitory effect of dyn-(1-8) on the tail-flick response was increased more than 100-fold by the i.t.v. pretreatment of rats with the three PIs. The inhibition produced by dyn-(1-8) in rats pretreated with any combination of two PIs was significantly smaller than that in rats pretreated with three PIs, indicating that any residual single peptidase could inactivate significant amounts of dyn-(1-8). The antagonistic effectiveness of naloxone, a relatively selective mu-opioid antagonist, indicates that dyn-(1-8)-induced inhibition of tail-flick response in rats pretreated with three PIs is mediated by mu-opioid receptors. Furthermore, mu-receptor-mediated inhibition induced by dyn-(1-8) was significantly greater than that produced by [Met5]-enkephalin in rats pretreated with three PIs. The data obtained in the present investigations together with those obtained in previous studies strongly indicate that dyn-(1-8) not only has well-known kappa-agonist activity but also has high mu-agonist activity.

    Topics: Analgesics, Opioid; Analysis of Variance; Angiotensin-Converting Enzyme Inhibitors; Animals; Anti-Bacterial Agents; Captopril; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Glycopeptides; Injections, Intraventricular; Male; Naloxone; Narcotic Antagonists; Pain; Pain Measurement; Peptide Fragments; Peptides; Protease Inhibitors; Rats; Rats, Wistar; Receptors, Opioid, mu

2000
Protection against dynorphin-(1-8) hydrolysis in membrane preparations by the combination of amastatin, captopril and phosphoramidon.
    The Journal of pharmacology and experimental therapeutics, 1998, Volume: 286, Issue:2

    The amounts of dynorphin-(1-8) [dyn-(1-8)] and its seven hydrolysis products, Y, YG, YGG, YGGF, YGGFL, YGGFLR and YGGFLRR, were estimated after incubating dyn-(1-8) with a membrane fraction from either guinea-pig ileum or striatum for various times at 37 degrees C. The major hydrolysis products during the initial 5-min incubation were YGGFLR and Y, which indicates that dipeptidyl carboxypeptidase and aminopeptidase activities were mainly involved in the hydrolysis. After 60 min of incubation, dyn-(1-8) was completely hydrolyzed in both membrane preparations. When the ileal and the striatal preparations were incubated for 60 min in the presence of both captopril, a dipeptidyl carboxypeptidase inhibitor, and amastatin, an aminopeptidase inhibitor, 63.8 and 49.3% of dyn-(1-8), respectively, were hydrolyzed. The YGG fragment was the major hydrolysis product in both preparations. When the ileal and the striatal membrane fractions were incubated with dyn-(1-8) in the presence of three peptidase inhibitors, captopril, amastatin and phosphoramidon (an inhibitor of endopeptidase-24.11), approximately 95% of the opioid octapeptide remained intact in both cases. This shows that dyn-(1-8) was almost exclusively hydrolyzed by three enzymes, amastatin-sensitive aminopeptidase, captopril-sensitive dipeptidyl carboxypeptidase I and phosphoramidon-sensitive endopeptidase-24.11, in both ileal and striatal membranes. Additionally, the Ke (equilibrium dissociation constant) values of selective antagonists against dyn-(1-8) and its initial main hydrolysis product YGGFLR in two isolated preparations pretreated with the three peptidase inhibitors indicate that the latter acts on mu receptors in guinea pig ileum but delta receptors in mouse vas deferens and the former acts on kappa receptors in both preparations. It is indicated, therefore, that in the absence of peptidase inhibitors endogenously released dyn-(1-8) acts either through dyn-(1-8) itself on kappa receptors or through YGGFLR on mu or delta receptors depending on both the three peptidase activities and the three receptor type densities at the target synaptic membrane.

    Topics: Animals; Anti-Bacterial Agents; Biotransformation; Captopril; Chromatography, High Pressure Liquid; Dynorphins; Electrochemistry; Glycopeptides; Guinea Pigs; Hydrolysis; Hypothalamic Hormones; In Vitro Techniques; Kinetics; Male; Membranes; Mice; Mice, Inbred ICR; Peptide Fragments; Peptides; Protease Inhibitors; Receptors, Opioid, delta; Receptors, Opioid, kappa

1998
Inactivation of dynorphin-(1-8) in isolated preparations by three peptidases.
    Japanese journal of pharmacology, 1988, Volume: 47, Issue:4

    Inactivation of dynorphin-(1-8) in three in vitro isolated preparations, guinea-pig ileum, mouse vas deferens and rabbit vas deferens, was estimated by employing the relatively specific inhibitors of enkephalin-hydrolyzing enzymes. All three enzyme inhibitors, amastatin, captopril and phosphoramidon, significantly enhanced the inhibitory potency of dynorphin-(1-8) in the three isolated preparations. The magnitude of the enhancement of the dynorphin potency by captopril was significantly higher than that by either amastatin or phosphoramidon in guinea-pig ileum; that by amastatin was significantly higher than that by either captopril or phosphoramidon in rabbit vas deferens; and that by amastatin was similar to that by captopril, but significantly higher than that by phosphoramidon in mouse vas deferens. The Ke values of three antagonists, naloxone, Mr 2266 and ICI 154129, against dynorphin-(1-8) in the presence of the three peptidase inhibitors indicated that dynorphin-(1-8) acted on kappa receptors in guinea-pig ileum and on both kappa and delta receptors in mouse vas deferens. Since amastatin, captopril and phosphoramidon produced the naloxone-reversible inhibition of contractions of guinea-pig ileum in the presence of dynorphin-(1-8), all three dynorphin-inactivating enzymes were indicated to be located very close to kappa receptors.

    Topics: Aminopeptidases; Animals; Anti-Bacterial Agents; Captopril; Dynorphins; Glycopeptides; Guinea Pigs; Hypothalamic Hormones; In Vitro Techniques; Male; Mice; Mice, Inbred ICR; Muscle Contraction; Muscle, Smooth; Neprilysin; Oligopeptides; Peptide Fragments; Peptides; Peptidyl-Dipeptidase A; Protease Inhibitors; Rabbits

1988