phosphatidylcholines has been researched along with trimethoprim in 5 studies
Studies (phosphatidylcholines) | Trials (phosphatidylcholines) | Recent Studies (post-2010) (phosphatidylcholines) | Studies (trimethoprim) | Trials (trimethoprim) | Recent Studies (post-2010) (trimethoprim) |
---|---|---|---|---|---|
32,204 | 443 | 5,593 | 6,989 | 845 | 894 |
Protein | Taxonomy | phosphatidylcholines (IC50) | trimethoprim (IC50) |
---|---|---|---|
Chain A, Dihydrofolate reductase | Bacillus anthracis | 77200 | |
Chain A, dihydrofolate reductase (DHFR) | Bacillus anthracis | 77200 | |
Dihydrofolate reductase | Mycobacterium avium | 0.2588 | |
Dihydrofolate reductase | Homo sapiens (human) | 1.8206 | |
Dihydrofolate reductase | Lacticaseibacillus casei | 0.3493 | |
Dihydrofolate reductase type 1 | Escherichia coli | 0.25 | |
Dihydrofolate reductase | Neisseria gonorrhoeae | 0.45 | |
Thymidylate synthase | Homo sapiens (human) | 3.405 | |
Dihydrofolate reductase | Staphylococcus aureus | 0.0875 | |
Thymidylate synthase | Escherichia coli K-12 | 3.405 | |
Dihydrofolate reductase | Escherichia coli K-12 | 0.6064 | |
Bifunctional dihydrofolate reductase-thymidylate synthase | Plasmodium falciparum K1 | 0.01 | |
Dihydrofolate reductase type 1 from Tn4003 | Staphylococcus aureus | 0.023 | |
Dipeptidyl peptidase 4 | Rattus norvegicus (Norway rat) | 2.7 | |
Dihydrofolate reductase | Pneumocystis carinii | 0.7061 | |
Dihydrofolate reductase | Candida albicans | 0.1361 | |
Dipeptidyl peptidase 4 | Homo sapiens (human) | 2.7 | |
5-hydroxytryptamine receptor 2B | Rattus norvegicus (Norway rat) | 0.45 | |
Metabotropic glutamate receptor 5 | Rattus norvegicus (Norway rat) | 2.73 | |
Mu-type opioid receptor | Cavia porcellus (domestic guinea pig) | 2.8 | |
Bifunctional dihydrofolate reductase-thymidylate synthase | Toxoplasma gondii | 3.2206 | |
Bifunctional dihydrofolate reductase-thymidylate synthase | Plasmodium berghei ANKA | 0.12 | |
Dihydrofolate reductase | Streptococcus pneumoniae TIGR4 | 0.0297 | |
Dihydrofolate reductase | Lactococcus lactis subsp. lactis Il1403 | 0.45 | |
Dihydrofolate reductase | Bacillus anthracis | 4.77 | |
Dihydrofolate reductase | Rattus norvegicus (Norway rat) | 1.244 | |
Dihydrofolate reductase | Pneumocystis jirovecii | 0.092 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (20.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 2 (40.00) | 2.80 |
Authors | Studies |
---|---|
Grunwald, R; Painter, GR; Roth, B | 1 |
Dama, JF; Rose, JP; Sun, R; Tan, JS; Voth, GA | 1 |
Han, Y; Rose, JP; Sun, R; Swanson, JMJ; Tan, JS; Voth, GA | 1 |
Cai, W; Chipot, C; Dehez, F; Shao, X; Zhang, H | 1 |
Aydin, F; da Hora, GCA; Durumeric, AEP; Nguyen, JDM; Oh, MI; Swanson, JMJ | 1 |
5 other study(ies) available for phosphatidylcholines and trimethoprim
Article | Year |
---|---|
Interaction of the antifolate antibiotic trimethoprim with phosphatidylcholine membranes: a 13C and 31P nuclear magnetic resonance study.
Topics: Cell Membrane Permeability; Magnetic Resonance Spectroscopy; Models, Molecular; Phosphatidylcholines; Solubility; Trimethoprim; Viscosity | 1988 |
Transition-Tempered Metadynamics Is a Promising Tool for Studying the Permeation of Drug-like Molecules through Membranes.
Topics: Algorithms; Ethanol; Lipid Bilayers; Molecular Dynamics Simulation; Pharmaceutical Preparations; Phosphatidylcholines; Thermodynamics; Trimethoprim | 2016 |
Molecular transport through membranes: Accurate permeability coefficients from multidimensional potentials of mean force and local diffusion constants.
Topics: Biological Transport; Diffusion; Lipid Bilayers; Models, Chemical; Molecular Dynamics Simulation; Permeability; Phosphatidylcholines; Thermodynamics; Trimethoprim | 2018 |
Modulation of membrane permeability by carbon dioxide.
Topics: Carbon Dioxide; Cell Membrane; Dideoxyadenosine; Ethanol; Lipid Bilayers; Molecular Dynamics Simulation; Permeability; Phosphatidylcholines; Trimethoprim | 2020 |
Improving the accuracy and convergence of drug permeation simulations via machine-learned collective variables.
Topics: Algorithms; Cholesterol; Lipid Bilayers; Molecular Dynamics Simulation; Pharmacokinetics; Phosphatidylcholines; Thermodynamics; Trimethoprim; Unsupervised Machine Learning | 2021 |