Page last updated: 2024-09-05

phosphatidylcholines and resveratrol

phosphatidylcholines has been researched along with resveratrol in 16 studies

Compound Research Comparison

Studies
(phosphatidylcholines)
Trials
(phosphatidylcholines)
Recent Studies (post-2010)
(phosphatidylcholines)
Studies
(resveratrol)
Trials
(resveratrol)
Recent Studies (post-2010) (resveratrol)
32,2044435,59310,9312417,998

Protein Interaction Comparison

ProteinTaxonomyphosphatidylcholines (IC50)resveratrol (IC50)
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
Chain A, Leukotriene A-4 hydrolaseHomo sapiens (human)212
M18 aspartyl aminopeptidasePlasmodium falciparum 3D72.242
VifHuman immunodeficiency virus 125.31
DNA dC->dU-editing enzyme APOBEC-3G isoform 1Homo sapiens (human)25.31
Transient receptor potential cation channel subfamily A member 1Homo sapiens (human)0.75
Amyloid-beta precursor proteinHomo sapiens (human)2.6
Cytochrome P450 1A2Homo sapiens (human)3
Prostaglandin G/H synthase 1Ovis aries (sheep)2.025
Aldo-keto reductase family 1 member B1Rattus norvegicus (Norway rat)2.312
Luciferin 4-monooxygenasePhotinus pyralis (common eastern firefly)0.0589
Cytochrome P450 3A4Homo sapiens (human)0.6
Neuronal acetylcholine receptor subunit alpha-4Rattus norvegicus (Norway rat)0.685
DNA polymerase alpha catalytic subunitHomo sapiens (human)3.3
Polyunsaturated fatty acid 5-lipoxygenaseHomo sapiens (human)4.9
AromataseHomo sapiens (human)0.96
Cytochrome P450 2C9 Homo sapiens (human)7
Neuronal acetylcholine receptor subunit beta-2Rattus norvegicus (Norway rat)0.685
TyrosinaseHomo sapiens (human)5.35
Ribosyldihydronicotinamide dehydrogenase [quinone]Homo sapiens (human)1.3972
Nuclear factor NF-kappa-B p105 subunitHomo sapiens (human)2.5
Amine oxidase [flavin-containing] AHomo sapiens (human)2.4945
Prostaglandin G/H synthase 1Homo sapiens (human)0.8517
Sodium-dependent noradrenaline transporter Homo sapiens (human)2.312
Amine oxidase [flavin-containing] BHomo sapiens (human)5.01
Dipeptidyl peptidase 4Homo sapiens (human)0.0006
Cytochrome P450 2C19Homo sapiens (human)3
Prostaglandin G/H synthase 2Homo sapiens (human)1.672
Prostaglandin G/H synthase 2Ovis aries (sheep)3.49
Nuclear factor NF-kappa-B p100 subunit Homo sapiens (human)2.5
Transcription factor p65Homo sapiens (human)2.5
Cytochrome P450 1B1Homo sapiens (human)1.4
Transient receptor potential cation channel subfamily A member 1Rattus norvegicus (Norway rat)1.63
large T antigenBetapolyomavirus macacae26.2

Research

Studies (16)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (6.25)18.2507
2000's2 (12.50)29.6817
2010's11 (68.75)24.3611
2020's2 (12.50)2.80

Authors

AuthorsStudies
de Godos, A; García-García, J; Gómez-Fernández, JC; Micol, V1
Tou, J; Urbizo, C1
Fang, CL; Fang, JY; Hung, CF; Liao, MH1
Holmsen, H; Olas, B1
Barros Neto, B; Cadena, PG; Cavalcanti, IM; Cordeiro, RB; Lima Filho, JL; Pereira, MA; Pimentel, Mdo C; Santos-Magalhães, NS; Silva, VL1
Barrajón-Catalán, E; Catania, A; Cicirata, F; Micol, V; Nicolosi, S1
Koumanov, K; Markovska, T; Momchilova, A; Nikolova-Karakashian, M; Pankov, R; Petkova, D; Skrobanska, R; Staneva, G1
Fu, LM; Han, RM; Liang, R; Skibsted, LH; Wang, HJ; Zhang, JP1
Babica, P; Böke, H; Kumar, E; Park, JS; Sovadinova, I; Trosko, JE; Upham, BL; Wilke, A1
Neves, AR; Nunes, C; Reis, S2
Amenitsch, H; Neves, AR; Nunes, C; Reis, S1
Bianchi, A; Scalia, S; Trotta, V; Zampino, MR1
Caddeo, C; Cardia, MC; Fadda, AM; Lai, F; Luhmer, M; Sinico, C1
Gabryś, D; Gramatyka, M; Kulik, R; Sokół, M; Widłak, P1
Ceja-Vega, J; Gamez Hernandez, A; Gudyka, J; Ivanchenko, K; Lee, S; Perez, E; Rosario, J; Scollan, P1

Other Studies

16 other study(ies) available for phosphatidylcholines and resveratrol

ArticleYear
The cancer chemopreventive agent resveratrol is incorporated into model membranes and inhibits protein kinase C alpha activity.
    Archives of biochemistry and biophysics, 1999, Dec-15, Volume: 372, Issue:2

    Topics: Acrylamide; Animals; Anticarcinogenic Agents; Calorimetry, Differential Scanning; Diffusion; Enzyme Activation; Fluorescence; Inhibitory Concentration 50; Isoenzymes; Liposomes; Magnetic Resonance Spectroscopy; Membrane Fluidity; Membranes, Artificial; Micelles; Octoxynol; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylserines; Protein Kinase C; Protein Kinase C-alpha; Resveratrol; Stilbenes; Temperature; Thermodynamics

1999
Resveratrol inhibits the formation of phosphatidic acid and diglyceride in chemotactic peptide- or phorbol ester-stimulated human neutrophils.
    Cellular signalling, 2001, Volume: 13, Issue:3

    Topics: Choline; Chromatography, Thin Layer; Diglycerides; Drug Interactions; Ethanol; Ethanolamine; Glycerophosphates; Glycerophospholipids; Humans; In Vitro Techniques; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Phosphatidic Acids; Phosphatidylcholines; Resveratrol; Stilbenes; Tetradecanoylphorbol Acetate; Time Factors

2001
The effect of oil components on the physicochemical properties and drug delivery of emulsions: tocol emulsion versus lipid emulsion.
    International journal of pharmaceutics, 2007, Apr-20, Volume: 335, Issue:1-2

    Topics: Animals; Antioxidants; Biphenyl Compounds; Carotid Stenosis; Chemistry, Pharmaceutical; Coconut Oil; Disease Models, Animal; Drug Carriers; Drug Compounding; Emulsions; Hemolysis; Male; Micelles; Oils; Particle Size; Phosphatidylcholines; Picrates; Plant Oils; Polyethylene Glycols; Rats; Rats, Sprague-Dawley; Resveratrol; Solubility; Stilbenes; Surface-Active Agents; Technology, Pharmaceutical; Time Factors; Vitamin E

2007
Interaction of resveratrol with membrane glycerophospholipids in model system in vitro.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2012, Volume: 50, Issue:11

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Calorimetry, Differential Scanning; Glycerophospholipids; Liposomes; Membrane Lipids; Phosphatidylcholines; Phosphatidylserines; Resveratrol; Stilbenes; Transition Temperature

2012
Nanoencapsulation of quercetin and resveratrol into elastic liposomes.
    Biochimica et biophysica acta, 2013, Volume: 1828, Issue:2

    Topics: Adipocytes; Chemistry, Physical; Cholesterol; Chromatography, High Pressure Liquid; Cyclodextrins; Deoxycholic Acid; Drug Delivery Systems; Drug Design; Elasticity; Kinetics; Liposomes; Microscopy, Electron, Scanning; Nanoparticles; Nanotechnology; Phosphatidylcholines; Quercetin; Resveratrol; Solubility; Stilbenes; Time Factors

2013
Immunoliposome encapsulation increases cytotoxic activity and selectivity of curcumin and resveratrol against HER2 overexpressing human breast cancer cells.
    Breast cancer research and treatment, 2013, Volume: 141, Issue:1

    Topics: Antibodies, Monoclonal, Humanized; Anticarcinogenic Agents; Antineoplastic Agents; Biological Availability; Biological Products; Breast Neoplasms; Carcinoma, Ductal, Breast; Cell Division; Cell Line, Tumor; Cholesterol; Chromatography, High Pressure Liquid; Curcumin; Drug Compounding; Drug Screening Assays, Antitumor; Female; Gene Expression Regulation, Neoplastic; Genes, erbB-2; Humans; Immunoconjugates; Liposomes; Neoplasm Proteins; Particle Size; Phosphatidylcholines; Phosphatidylethanolamines; Receptor, ErbB-2; Resveratrol; Stilbenes; Trastuzumab

2013
Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes.
    Chemico-biological interactions, 2014, Jan-25, Volume: 207

    Topics: Acetates; Aging; Animals; Cell Membrane; Fatty Acids; Fluorescence; Glutathione; Hepatocytes; Lipid Metabolism; Lipid Peroxides; Male; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylserines; Rats; Rats, Wistar; Reactive Oxygen Species; Resveratrol; Sphingolipids; Stilbenes

2014
Nutritional aspects of β-carotene and resveratrol antioxidant synergism in giant unilamellar vesicles.
    Food & function, 2014, Jul-25, Volume: 5, Issue:7

    Topics: Antioxidants; beta Carotene; Glycine max; Image Processing, Computer-Assisted; Microscopy, Fluorescence; Oxidative Stress; Phosphatidylcholines; Resveratrol; Stilbenes; Unilamellar Liposomes

2014
Phosphatidylcholine Specific PLC-Induced Dysregulation of Gap Junctions, a Robust Cellular Response to Environmental Toxicants, and Prevention by Resveratrol in a Rat Liver Cell Model.
    PloS one, 2015, Volume: 10, Issue:5

    Topics: Animals; Bridged-Ring Compounds; Butadienes; Cell Line; Gap Junctions; Nitriles; Norbornanes; Phosphatidylcholines; Principal Component Analysis; Rats; Rats, Inbred F344; Resveratrol; Stilbenes; Thiocarbamates; Thiones; Type C Phospholipases

2015
New Insights on the Biophysical Interaction of Resveratrol with Biomembrane Models: Relevance for Its Biological Effects.
    The journal of physical chemistry. B, 2015, Sep-03, Volume: 119, Issue:35

    Topics: Antineoplastic Agents, Phytogenic; Cardiotonic Agents; Cholesterol; Lipid Bilayers; Liposomes; Membrane Fluidity; Molecular Structure; Neuroprotective Agents; Phosphatidylcholines; Resveratrol; Spectrophotometry; Sphingomyelins; Stilbenes

2015
Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action.
    Biochimica et biophysica acta, 2016, Volume: 1858, Issue:1

    Topics: Animals; Chickens; Cholesterol; Cyclic N-Oxides; Diphenylhexatriene; Fluorescence Resonance Energy Transfer; Fluorescent Dyes; Lipid Bilayers; Liposomes; Membrane Microdomains; Octoxynol; Phosphatidylcholines; Resveratrol; Sphingomyelins; Stilbenes; Thermodynamics

2016
Resveratrol Interaction with Lipid Bilayers: A Synchrotron X-ray Scattering Study.
    Langmuir : the ACS journal of surfaces and colloids, 2016, Dec-06, Volume: 32, Issue:48

    Topics: Animals; Cattle; Cholesterol; Egg Yolk; Lipid Bilayers; Phosphatidylcholines; Resveratrol; Scattering, Small Angle; Sheep; Sphingomyelins; Stilbenes; Synchrotrons; X-Ray Diffraction

2016
Enhancement of
    Die Pharmazie, 2017, Apr-01, Volume: 72, Issue:4

    Topics: Adult; Anti-Inflammatory Agents; Antioxidants; Chemistry, Pharmaceutical; Drug Stability; Emulsions; Female; Humans; Hydrogels; Lipids; Male; Microscopy; Microspheres; Phosphatidylcholines; Photolysis; Resveratrol; Skin Cream; Stilbenes; Surface-Active Agents; Triglycerides; Young Adult

2017
    Scientific reports, 2019, 11-28, Volume: 9, Issue:1

    Topics: Antioxidants; Glycine max; Liposomes; Phosphatidylcholines; Proton Magnetic Resonance Spectroscopy; Resveratrol

2019
Resveratrol administration prevents radiation-related changes in metabolic profiles of hearts 20 weeks after irradiation of mice with a single 2 Gy dose.
    Acta biochimica Polonica, 2020, Dec-17, Volume: 67, Issue:4

    Topics: Administration, Oral; Animals; Cardiotonic Agents; Female; Glycine; Heart; Lactic Acid; Metabolome; Mice; Mice, Inbred C57BL; Phosphatidylcholines; Photons; Radiation Injuries, Experimental; Radiation, Ionizing; Resveratrol; Taurine

2020
Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions.
    The Journal of membrane biology, 2022, Volume: 255, Issue:4-5

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Calorimetry, Differential Scanning; Cholesterol; Lipid Bilayers; Permeability; Phosphatidylcholines; Resveratrol; Spectroscopy, Fourier Transform Infrared; Water

2022