phorbol and ingenane

phorbol has been researched along with ingenane* in 2 studies

Other Studies

2 other study(ies) available for phorbol and ingenane

ArticleYear
Nineteen-step total synthesis of (+)-phorbol.
    Nature, 2016, Apr-07, Volume: 532, Issue:7597

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from many chemists and biologists owing to its intriguing chemical structure and the medicinal potential of phorbol esters. Access to useful quantities of phorbol and related analogues has relied on isolation from natural sources and semisynthesis. Despite efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies, owing to its complexity and unusual placement of oxygen atoms. Purely synthetic enantiopure phorbol has remained elusive, and biological synthesis has not led to even the simplest members of this terpene family. Recently, the chemical syntheses of eudesmanes, germacrenes, taxanes and ingenanes have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis in which powerful C-C bond constructions and C-H bond oxidations go hand in hand. Here we implement a two-phase terpene synthesis strategy to achieve enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this synthesis route is not to displace isolation or semisynthesis as a means of generating the natural product per se, but rather to enable access to analogues containing unique placements of oxygen atoms that are otherwise inaccessible.

    Topics: Bicyclic Monoterpenes; Biological Products; Chemistry Techniques, Synthetic; Diterpenes; Molecular Structure; Monoterpenes; Oxygen; Phorbol Esters; Phorbols; Stereoisomerism

2016
Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication.
    Journal of natural products, 2015, Jun-26, Volume: 78, Issue:6

    Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.

    Topics: Anti-HIV Agents; Antiviral Agents; Chikungunya virus; Diterpenes; DNA Replication; Esters; Euphorbiaceae; HIV Infections; HIV-1; HIV-2; Molecular Structure; Phorbol Esters; Tetradecanoylphorbol Acetate; Virus Replication

2015