Page last updated: 2024-08-16

phloretin and rutin

phloretin has been researched along with rutin in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's1 (14.29)29.6817
2010's5 (71.43)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Constantinou, A; Mehta, R; Moon, R; Rao, K; Runyan, C; Vaughan, A1
Domina, NG; Khlebnikov, AI; Kirpotina, LN; Quinn, MT; Schepetkin, IA1
Amić, D; Lucić, B1
Maccari, R; Ottanà, R1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Abe, H; Adachi, I; Horino, Y; Kesamaru, H; Nose, T; Suyama, K; Tomohara, K1
Aguiñiga-Sánchez, I; Aguirre-Medina, JF; Cadena-Iñiguez, J; Rivera-Martínez, AR; Ruiz-Posadas, LDM; Salazar-Aguilar, S; Santiago-Osorio, E; Soto-Hernández, M1

Other Studies

7 other study(ies) available for phloretin and rutin

ArticleYear
Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.
    Journal of natural products, 1995, Volume: 58, Issue:2

    Topics: DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Electrophoresis, Agar Gel; Flavonoids; Hydroxylation; Plasmids; Protein Conformation; Structure-Activity Relationship; Topoisomerase I Inhibitors; Topoisomerase II Inhibitors

1995
Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems.
    Bioorganic & medicinal chemistry, 2007, Feb-15, Volume: 15, Issue:4

    Topics: Animals; Antioxidants; Drug Design; Flavonoids; Humans; Phagocytes; Phenols; Polyphenols; Quantitative Structure-Activity Relationship

2007
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents.
    Journal of medicinal chemistry, 2012, Jan-12, Volume: 55, Issue:1

    Topics: Animals; Antineoplastic Agents; Antitubercular Agents; Diabetes Mellitus; Humans; Hypoglycemic Agents; Insulin Resistance; Isoenzymes; Models, Molecular; Molecular Targeted Therapy; Mycobacterium tuberculosis; Neoplasms; Protein Conformation; Protein Tyrosine Phosphatases; Proto-Oncogene Proteins

2012
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
DMSO-Perturbing Assay for Identifying Promiscuous Enzyme Inhibitors.
    ACS medicinal chemistry letters, 2019, Jun-13, Volume: 10, Issue:6

    Topics:

2019
Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.
    Nutrients, 2017, Jul-25, Volume: 9, Issue:8

    Topics: Antineoplastic Agents, Phytogenic; Apigenin; Cell Proliferation; Cucurbitaceae; Cucurbitacins; Female; Flavanones; Flavonoids; Fruit; HeLa Cells; Humans; Inhibitory Concentration 50; Phloretin; Phytochemicals; Plant Extracts; Quercetin; Rutin; Uterine Cervical Neoplasms

2017