pheophytin-a has been researched along with ribulose-1-5-diphosphate* in 2 studies
2 other study(ies) available for pheophytin-a and ribulose-1-5-diphosphate
Article | Year |
---|---|
Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.
Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells. Topics: Chlorella; Chlorophyll; Chlorophyll A; Gene Expression; Herbicides; Paraquat; Photosynthesis; Ribulosephosphates | 2014 |
Effects of water deficit and its interaction with CO(2) supply on the biochemistry and physiology of photosynthesis in sunflower.
Photosynthetic responses of sunflower plants grown for 52 d in ambient and elevated CO(2) (A=350 or E=700 micromol mol(-1), respectively) and subjected to no (control), mild or severe water deficits after 45 d were analysed to determine if E modifies responses to water deficiency. Relative water content, leaf water potential (Psi(w)) and osmotic potential decreased with water deficiency, but there were no effects of E. Growth in E decreased stomatal conductance (g(s)) and thereby transpiration, but increased net CO(2) assimilation rate (P(n), short-term measurements); therefore, water-use efficiency increased by 230% (control plants) and 380% (severe stress). Growth in E did not affect the response of P(n) to intercellular CO(2) concentration, despite a reduction of 25% in Rubisco content, because this was compensated by a 32% increase in Rubisco activity. Analysis of chlorophyll a fluorescence showed that changes in energy metabolism associated with E were small, despite the decreased Rubisco content. Water deficits decreased g(s) and P(n): metabolic limitation was greater than stomatal at mild and severe deficit and was not overcome by elevated CO(2). The decrease in P(n) with water deficiency was related to lower Rubisco activity rather than to ATP and RuBP contents. Thus, there were no important interactions between CO(2) during growth and water deficit with respect to photosynthetic metabolism. Elevated CO(2 )will benefit sunflower growing under water deficit by marginally increasing P(n), and by slowing transpiration, which will decrease the rate and severity of water deficits, with limited effects on metabolism. Topics: Adenosine Triphosphate; Biological Transport; Carbon Dioxide; Chlorophyll; Chlorophyll A; Helianthus; Light-Harvesting Protein Complexes; Osmotic Pressure; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Plant Leaves; Plant Proteins; Plant Transpiration; Ribulose-Bisphosphate Carboxylase; Ribulosephosphates; Time Factors; Water | 2002 |