pheophytin-a and pheophorbide-b

pheophytin-a has been researched along with pheophorbide-b* in 2 studies

Other Studies

2 other study(ies) available for pheophytin-a and pheophorbide-b

ArticleYear
Chlorophyll a formation in the chlorophyll b reductase reaction requires reduced ferredoxin.
    The Journal of biological chemistry, 1998, Dec-25, Volume: 273, Issue:52

    The reduction of chlorophyllide b and its analogue zinc pheophorbide b in etioplasts of barley (Hordeum vulgare L.) was investigated in detail. In intact etioplasts, the reduction proceeds to chlorophyllide a and zinc pheophorbide a or, if incubated together with phytyldiphosphate, to chlorophyll a and zinc pheophytin a, respectively. In lysed etioplasts supplied with NADPH, the reduction stops at the intermediate step of 7(1)-OH-chlorophyll(ide) and Zn-7(1)-OH-pheophorbide or Zn-7(1)-OH-pheophytin. However, the final reduction is achieved when reduced ferredoxin is added to the lysed etioplasts, suggesting that ferredoxin is the natural cofactor for reduction of chlorophyll b to chlorophyll a. The reduction to chlorophyll a requires ATP in intact etioplasts but not in lysed etioplasts when reduced ferredoxin is supplied. The role of ATP and the significance of two cofactors for the two steps of reduction are discussed.

    Topics: Adenosine Triphosphate; Alcohol Oxidoreductases; Chlorophyll; Chlorophyll A; Ferredoxin-NADP Reductase; Ferredoxins; Hordeum; Intracellular Membranes; Oxidation-Reduction; Pheophytins; Plastids; Subcellular Fractions; Zinc

1998
Substrate specificity of chlorophyll(ide) b reductase in etioplasts of barley (Hordeum vulgare L.).
    European journal of biochemistry, 1996, Nov-15, Volume: 242, Issue:1

    Enzyme activity of chlorophyll(ide) b reductase is present in etioplasts. Recently the conversion of chlorophyllide b to chlorophyll a via 7(1)-hydroxychlorophyll a was demonstrated in barley etioplasts. We used zinc pheophorbide b for a detailed investigation of the reduction of the 7-formyl group to the 7(1)-hydroxy compound in intact barley etioplasts. The reaction proceeded likewise before esterification and after esterification with phytyl diphosphate. The metal-free pheophorbide b, that is not accepted by chlorophyll synthase for esterification, is reduced to 7(1)-hydroxypheophorbide a to a small extent. The zinc (13(2)S)-pheophorbide b is at least equally well accepted for reduction as the epimer with the 13(2)R configuration of natural chlorophyll b. The reaction requires NADPH or NADH, although the latter is less effective. ATP is not required for the first step to the 7(1)-hydroxy compound. The significance of chlorophyll b reduction for acclimation from shade to sun leaves and for chlorophyll degradation is discussed.

    Topics: Adenosine Triphosphate; Alcohol Oxidoreductases; Chlorophyll; Chlorophyll A; Chlorophyllides; Chromatography, High Pressure Liquid; Hordeum; NADP; Substrate Specificity

1996