pheophytin-a has been researched along with peridinin* in 37 studies
2 review(s) available for pheophytin-a and peridinin
Article | Year |
---|---|
Silver Island Film for Enhancing Light Harvesting in Natural Photosynthetic Proteins.
The effects of combining naturally evolved photosynthetic pigment-protein complexes with inorganic functional materials, especially plasmonically active metallic nanostructures, have been a widely studied topic in the last few decades. Besides other applications, it seems to be reasonable using such hybrid systems for designing future biomimetic solar cells. In this paper, we describe selected results that point out to various aspects of the interactions between photosynthetic complexes and plasmonic excitations in Silver Island Films (SIFs). In addition to simple light-harvesting complexes, like peridinin-chlorophyll-protein (PCP) or the Fenna-Matthews-Olson (FMO) complex, we also discuss the properties of large, photosynthetic reaction centers (RCs) and Photosystem I (PSI)-both prokaryotic PSI core complexes and eukaryotic PSI supercomplexes with attached antenna clusters (PSI-LHCI)-deposited on SIF substrates. Topics: Carotenoids; Chlorophyll A; Formaldehyde; Glucose; Light-Harvesting Protein Complexes; Nanostructures; Photosynthesis; Photosystem I Protein Complex; Silver; Spectrometry, Fluorescence | 2020 |
Time-resolved infrared spectroscopy in the study of photosynthetic systems.
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Kinetics; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Rhodobacter sphaeroides; Spectroscopy, Fourier Transform Infrared; Thylakoids | 2017 |
35 other study(ies) available for pheophytin-a and peridinin
Article | Year |
---|---|
Upregulation of Peridinin-Chlorophyll A-Binding Protein in a Toxic Strain of
Topics: Carrier Proteins; Chlorophyll A; Dinoflagellida; Okadaic Acid; Phosphates; Up-Regulation | 2023 |
The Energy Transfer Yield between Carotenoids and Chlorophylls in Peridinin Chlorophyll
The energy transfer (ET) from carotenoids (Cars) to chlorophylls (Chls) in photosynthetic complexes occurs with almost unitary efficiency thanks to the synergistic action of multiple finely tuned channels whose photophysics and dynamics are not fully elucidated yet. We investigated the energy flow from the Car peridinin (Per) to Chl Topics: Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Energy Transfer; Mutation | 2022 |
Biochemical and spectroscopic characterizations of the oligomeric antenna of the coral symbiotic Symbiodiniaceae Fugacium kawagutii.
Light-harvesting antennas in photosynthesis capture light energy and transfer it to the reaction centers (RCs) where photochemistry takes place. The sustainable growth of the reef-building corals relies on a constant supply of the photosynthates produced by the endosymbiotic dinoflagellate, belonging to the family of Symbiodiniaceae. The antenna system in this group consists of the water-soluble peridinin-chlorophyll a-protein (PCP) and the intrinsic membrane chlorophyll a-chlorophyll c Topics: Animals; Anthozoa; Chlorophyll; Chlorophyll A; Dinoflagellida; Light-Harvesting Protein Complexes | 2022 |
An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase that operates in plants and most algae, revealing that in major phyla of marine algae, an ancient gene duplication triggered the evolution of carotenoid functions beyond photoprotection toward light harvesting. Topics: Algal Proteins; Aquatic Organisms; Carotenoids; Chlorophyll A; Gene Expression Regulation; Light-Harvesting Protein Complexes; Oxidoreductases; Phaeophyceae; Phylogeny; Xanthophylls | 2020 |
Uncovering dark multichromophoric states in Peridinin-Chlorophyll-Protein.
It has long been recognized that visible light harvesting in Peridinin-Chlorophyll-Protein is driven by the interplay between the bright (S Topics: Carotenoids; Chlorophyll; Chlorophyll A; Proteins | 2020 |
Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-
Solar light harvesting begins with electronic energy transfer in structurally complex light-harvesting antennae such as the peridinin chlorophyll- Topics: Carotenoids; Chlorophyll A; Dinoflagellida; Energy Transfer; Kinetics; Models, Chemical; Spectrum Analysis; Thermodynamics | 2019 |
Light Harvesting by Equally Contributing Mechanisms in a Photosynthetic Antenna Protein.
We report supramolecular quantum mechanics/molecular mechanics simulations on the peridinin-chlorophyll a protein (PCP) complex from the causative algal species of red tides. These calculations reproduce for the first time quantitatively the distinct peridinin absorptions, identify multichromophoric molecular excitations, and elucidate the mechanisms regulating the strongly allowed S Topics: Carotenoids; Chlorophyll; Chlorophyll A; Chlorophyll Binding Proteins; Dinoflagellida; Harmful Algal Bloom; Light; Photosynthesis | 2018 |
Strong Plasmonic Enhancement of a Single Peridinin-Chlorophyll a-Protein Complex on DNA Origami-Based Optical Antennas.
In this contribution, we fabricate hybrid constructs based on a natural light-harvesting complex, peridinin-chlorophyll a-protein, coupled to dimer optical antennas self-assembled with the help of the DNA origami technique. This approach enables controlled positioning of individual complexes at the hotspot of the optical antennas based on large, colloidal gold and silver nanoparticles. Our approach allows us to selectively excite the different pigments present in the harvesting complex, reaching a fluorescence enhancement of 500-fold. This work expands the range of self-assembled functional hybrid constructs for harvesting sunlight and can be further developed for other pigment-proteins and proteins. Topics: Carotenoids; Chlorophyll A; Dinoflagellida; DNA; Fluorescence; Gold Colloid; Light-Harvesting Protein Complexes; Metal Nanoparticles; Models, Molecular; Nanostructures; Protozoan Proteins; Silver; Sunlight | 2018 |
Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates.
Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Cold Temperature; Dinoflagellida; Energy Transfer; Light; Light-Harvesting Protein Complexes; Spinacia oleracea | 2018 |
Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein.
Excitation energy transfer from peridinin to chlorophyll (Chl) a is unusually efficient in the peridinin-chlorophyll a protein (PCP) from dinoflagellates. This enhanced performance is derived from the long intrinsic lifetime of 4.4 ps for the S Topics: Carotenoids; Chlorophyll; Chlorophyll A; Crystallography, X-Ray; Dinoflagellida; Energy Transfer; Light-Harvesting Protein Complexes; Molecular Conformation; Protozoan Proteins; Staphylococcal Protein A | 2017 |
Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a-protein by ultrafast multi-pulse transient absorption spectroscopy.
Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S Topics: Carotenoids; Chlorophyll; Chlorophyll A; Energy Transfer; Kinetics; Spectrum Analysis | 2017 |
Excitation relaxation dynamics and energy transfer in pigment-protein complexes of a dinoflagellate, revealed by ultrafast fluorescence spectroscopy.
Photosynthetic light-harvesting complexes, found in aquatic photosynthetic organisms, contain a variety of carotenoids and chlorophylls. Most of the photosynthetic dinoflagellates possess two types of light-harvesting antenna complexes: peridinin (Peri)-chlorophyll (Chl) a/c-protein, as an intrinsic thylakoid membrane complex protein (iPCP), and water-soluble Peri-Chl a-protein, as an extrinsic membrane protein (sPCP) on the inner surface of the thylakoid. Peri is a unique carotenoid that has eight C=C bonds and one C=O bond, which results in a characteristic absorption band in the green wavelength region. In the present study, excitation relaxation dynamics of Peri in solution and excitation energy transfer processes of sPCP and the thylakoid membranes, prepared from the photosynthetic dinoflagellate, Symbiodinium sp., are investigated by ultrafast time-resolved fluorescence spectroscopy. We found that Peri-to-Chl a energy transfer occurs via the Peri S Topics: Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Energy Transfer; Light-Harvesting Protein Complexes; Spectrometry, Fluorescence; Thylakoids | 2016 |
Efficient pathways of excitation energy transfer from delocalized S2 excitons in the peridinin-chlorophyll a-protein complex.
Excitation energy transfer (EET) in peridinin-chlorophyll-protein (PCP) complexes is dominated by the S1 → Qy pathway, but the high efficiencies cannot be solely explained by this one pathway. We postulate that EET from peridinin S2 excitons may also be important. We use complete active space configuration interaction calculations and the transition density cube method to calculate Coulombic couplings between peridinin and chlorophyll a in the PCP complex of the dinoflagellate Amphidinium carterae and compare monomeric and dimeric delocalized peridinin S2 excited states. Our calculations show that the S2 → Qy EET pathway from peridinin to chlorophyll a is the dominant energy transfer pathway from the S2 excited state in PCP, with several values in the sub-picosecond range. This result suggests that the S2 → Qy EET pathway may be responsible for the reported chlorophyll a bleaching signature seen in experiment at around 200 fs, and not the S2 → Qx pathway as previously suggested. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Computer Simulation; Dimerization; Dinoflagellida; Energy Transfer; Fluorescence Resonance Energy Transfer; Galactolipids; Models, Chemical | 2015 |
Vibrational relaxation as the driving force for wavelength conversion in the peridinin-chlorophyll a-protein.
We present a computationally derived energy transfer model for the peridinin-chlorophyll a-protein (PCP), which invokes vibrational relaxation in the two lowest singlet excited states rather than internal conversion between them. The model allows an understanding of the photoinduced processes without assuming further electronic states or a dependence of the 2Ag state character on the vibrational sub-state. We report molecular dynamics simulations (CHARMM22 force field) and quantum mechanics/molecular mechanics (QM/MM) calculations on PCP. In the latter, the QM region containing a single peridinin (Per) chromophore or a Per-Chl a (chlorophyll a) pair is treated by density functional theory (DFT, CAM-B3LYP) for geometries and by DFT-based multireference configuration interaction (DFT/MRCI) for excitation energies. The calculations show that Per has a bright, green light absorbing 2Ag state, in addition to the blue light absorbing 1Bu state found in other carotenoids. Both states undergo a strong energy lowering upon relaxation, leading to emission in the red, while absorbing in the blue or green. The orientation of their transition dipole moments indicates that both states are capable of excited-state energy transfer to Chl a, without preference for either 1Bu or 2Ag as donor state. We propose that the commonly postulated partial intramolecular charge transfer (ICT) character of a donating Per state can be assigned to the relaxed 1Bu state, which takes on ICT character. By assuming that both 1Bu and 2Ag are able to donate to the Chl a Q band, one can explain why different chlorophyll species in PCP exhibit different acceptor capabilities. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Models, Molecular | 2015 |
Excitation energy transfer in the peridinin-chlorophyll a-protein complex modeled using configuration interaction.
We modeled excitation energy transfer (EET) in the peridinin-chlorophyll a-protein (PCP) complex of dinoflagellate Amphidinium carterae to determine which pathways contribute dominantly to the high efficiency of this process. We used complete active space configuration interaction (CAS-CI) to calculate electronic structure properties of the peridinin (PID) and chlorophyll a (CLA) pigments in PCP and the transition density cube (TDC) method to calculate Coulombic couplings between energy transfer donors and acceptors. Our calculations show that the S1 → Qy EET pathway from peridinin to chlorophyll a is the dominant energy transfer pathway in PCP, with two sets of interactions-between PID612 and CLA601 and between PID622 and CLA602-contributing most strongly. EET lifetimes for these two interactions were calculated to be 2.66 and 2.90, with quantum efficiencies of 85.75 and 84.65%, respectively. The calculated Coulombic couplings for EET between two peridinin molecules in the strongly allowed S2 excited states are extremely large and suggest excitonic coupling between pairs of peridinin S2 states. This methodology is also broadly applicable to the study of EET in other photosynthetic complexes and/or organic photovoltaics, where both single and double excitations are present and donor and acceptor molecules are tightly packed. Topics: Algorithms; Carotenoids; Chlorophyll; Chlorophyll A; Computer Simulation; Dinoflagellida; Fluorescence Resonance Energy Transfer; Hydrogen Bonding; Models, Molecular; Molecular Structure; Protozoan Proteins; Water | 2014 |
Spectroscopic properties of the Chlorophyll a-Chlorophyll c 2-Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium.
Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a-chlorophyll c 2-peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Light-Harvesting Protein Complexes | 2014 |
The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont.
The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l(-1)) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ(15)N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions. Topics: Ammonium Compounds; Analysis of Variance; Animals; Anthozoa; beta Carotene; Calcification, Physiologic; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Fluorescence; Hot Temperature; Indian Ocean; Nitrogen; Photosynthesis; Stress, Physiological; Symbiosis; Xanthophylls | 2013 |
Low-temperature spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) complex from the coral symbiotic dinoflagellate Symbiodinium.
The spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) from the coral symbiotic dinoflagellate Symbiodinium have been characterized by application of various ultrafast optical spectroscopies including femto- and nanosecond time-resolved absorption and picosecond time-resolved fluorescence (TRF) at 77 K. Excited state properties of peridinin and Chl a and their intramolecular interaction characteristics have been obtained from global fitting analysis and directed kinetic modeling of the data sets and compared to their counterparts known for the PCP from Amphidinium carterae. The lifetimes of the excited state of peridinin show close agreement with those known for the counterpart PCP, demonstrating that molecular interactions have the same characteristics in both complexes. More variances have been recorded for the excited state properties of Chl a including elongation of both the intramolecular energy transfer time between Chl's within the pair in the protein monomer and the excited state lifetime of the long wavelength form of Chl a (terminal acceptor). Kinetic modeling of formation of the peridinin triplet state has shown that the PCP is protected from potential photodamage due to an extremely fast peridinin triplet state formation of kTT = (14.4 ± 2.3) × 10(9) s(-1) ((70 ± 12)(-1) (ps)(-1)) that guarantees instantaneous depletion of Chl a triplets and prevents formation of harmful singlet oxygen ((1)ΔgO2). Topics: Animals; Anthozoa; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Energy Transfer; Kinetics; Protozoan Proteins; Quantum Theory; Spectrometry, Fluorescence; Symbiosis; Temperature; Time Factors | 2013 |
Low-temperature time-resolved spectroscopic study of the major light-harvesting complex of Amphidinium carterae.
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a-chlorophyll-c 2-peridinin-protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin-chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from "red" peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin-chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment-protein complexes. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Cold Temperature; Dinoflagellida; Electrons; Energy Transfer; Kinetics; Light-Harvesting Protein Complexes; Spectroscopy, Near-Infrared; Time Factors | 2013 |
Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate Symbiodinium sp.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c(2)-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences. Topics: Amino Acid Sequence; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Genes, Protozoan; Light-Harvesting Protein Complexes; Molecular Sequence Data; Phylogeny; Protozoan Proteins; Sequence Alignment | 2012 |
Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes.
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Crystallography, X-Ray; Energy Transfer; Light-Harvesting Protein Complexes; Models, Molecular; Quantum Theory | 2011 |
Singlet and triplet state spectra and dynamics of structurally modified peridinins.
The peridinin-chlorophyll a-protein (PCP) is a light-harvesting pigment-protein complex found in many species of marine algae. It contains the highly substituted carotenoid peridinin and chlorophyll a, which together facilitate the transfer of absorbed solar energy to the photosynthetic reaction center. Photoexcited peridinin exhibits unorthodox spectroscopic and kinetic behavior for a carotenoid, including a strong dependence of the S(1) excited singlet state lifetime on solvent environment. This effect has been attributed to the presence of an intramolecular charge transfer (ICT) state in the molecule. The present work explores the effect of changing the extent of π-electron conjugation and attached functional groups on the nature of the ICT state of peridinin and how these factors affect the excited singlet and triplet state spectra and kinetics of the carotenoid. In this investigation three peridinin analogues denoted C-1-R-peridinin, C-1-peridinin, and D-1-peridinin were synthesized and studied using steady-state absorption and fluorescence techniques and ultrafast time-resolved transient absorption spectroscopy. The study explores the effect on the singlet and triplet state spectra and dynamics of removing the allene group from the peridinin structure and either replacing it with a rigid furanoid ring, replacing it with an epoxide group, or extending the polyene chain into the β-ionylidine ring. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Chlorophyta; Electrons; Fluorescence; Kinetics; Light-Harvesting Protein Complexes; Spectrum Analysis | 2011 |
Conservation of spin polarization during triplet-triplet energy transfer in reconstituted peridinin-chlorophyll-protein complexes.
Peridinin-chlorophyll-protein (PCP) complexes, where the N-terminal domain of native PCP from Amphidinium carterae has been reconstituted with different chlorophyll (Chl) species, have been investigated by time-resolved EPR in order to elucidate the details of the triplet-triplet energy transfer (TTET) mechanism. This spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognizable spin-polarization effects in the observed time-resolved EPR spectra. The spin polarization produced at the acceptor site (peridinin) depends on the initial polarization of the donor (chlorophyll) and on the relative geometric arrangement of the donor-acceptor spin axes. A variation of the donor triplet state properties in terms of population probabilities or triplet spin axis directions, as produced by replacement of chlorophyll a (Chl a) with non-native chlorophyll species (ZnChl a and BacterioChl a) in the reconstituted complexes, is unambiguously reflected in the polarization pattern of the carotenoid triplet state. For the first time, in the present investigation spin-polarization conservation has been shown to occur among natural cofactors in protein complexes during the TTET process. Proving the validity of the assumption of spin conservation adopted in the EPR spectral analysis, the results reinforce the hypothesis that in PCP proteins peridinin 614, according to X-ray nomenclature (Hofmann, E.; et al. Science 1996, 272, 1788-1791), is the carotenoid of election in the photoprotection mechanism based on TTET. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Electron Spin Resonance Spectroscopy; Energy Transfer; Light-Harvesting Protein Complexes; Spin Labels | 2011 |
Triplet-triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: comparison with the native PCP complex from Amphidinium carterae.
The triplet state of the carotenoid peridinin, populated by triplet-triplet energy transfer from photoexcited chlorophyll triplet state, in the reconstituted Peridinin-Chlorophyll a-protein, has been investigated by ODMR (Optically detected magnetic resonance), and pulse EPR spectroscopies. The properties of peridinins associated with the triplet state formation in complexes reconstituted with Chl a and Chl d have been compared to those of the main-form peridinin-chlorophyll protein (MFPCP) isolated from Amphidinium carterae. In the reconstituted samples no signals due to the presence of chlorophyll triplet states have been detected, during either steady state illumination or laser-pulse excitation. This demonstrates that reconstituted complexes conserve total quenching of chlorophyll triplet states, despite the biochemical treatment and reconstitution with the non-native Chl d pigment. Zero field splitting parameters of the peridinin triplet states are the same in the two reconstituted samples and slightly smaller than in native MFPCP. Analysis of the initial polarization of the photoinduced Electron-Spin-Echo detected spectra and their time evolution, shows that, in the reconstituted complexes, the triplet state is probably localized on the same peridinin as in native MFPCP although, when Chl d replaces Chl a, a local rearrangement of the pigments is likely to occur. Substitution of Chl d for Chl a identifies previously unassigned bands at approximately 620 and approximately 640 nm in the Triplet-minus-Singlet (T-S) spectrum of PCP detected at cryogenic temperature, as belonging to peridinin. Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Electron Spin Resonance Spectroscopy; Energy Transfer; Protozoan Proteins | 2009 |
Syntheses of allene-modified derivatives of peridinin toward elucidation of the effective role of the allene function in high energy transfer efficiencies in photosynthesis.
Peridinin is known as the main light-harvesting pigment in photosynthesis in the sea and exhibits exceptionally high energy transfer efficiencies to chlorophyll a. This energy transfer efficiency is thought to be related to the intricate structure of peridinin, which possesses allene and ylidenbutenolide functions in the polyene backbone. There are, however, no studies on the relationship between the structural features of peridinin and its super ability for energy transfer. We then focused on the subjects of why peridinin possesses a unique allene group and how the allene function plays a role in the exceptionally high energy transfer. Toward elucidation of the exact role of the allene function, we now describe the syntheses of three relatively unstable allene-modified derivatives of peridinin along with the results of the Stark spectroscopy of peridinin and the synthesized peridinin derivatives. Topics: Acetylene; Alkadienes; Alkenes; Carotenoids; Chlorophyll; Chlorophyll A; Energy Transfer; Models, Molecular; Photosynthesis; Protein Conformation; Solvents; Spectrum Analysis | 2009 |
Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy.
The peridinin-chlorophyll a-protein (PCP) of dinoflagellates is unique among the large variety of natural photosynthetic light-harvesting systems. In contrast to other chlorophyll protein complexes, the soluble PCP is located in the thylakoid lumen, and the carotenoid pigments outnumber the chlorophylls. The structure of the PCP complex consists of two symmetric domains, each with a central chlorophyll a (Chl-a) surrounded by four peridinin molecules. The protein provides distinctive surroundings for the pigment molecules, and in PCP, the specific environment around each peridinin results in overlapping spectral line shapes, suggestive of different functions within the protein. One particular Per, Per-614, is hypothesized to show the strongest electronic interaction with the central Chl-a. We have performed an in vitro reconstitution of pigments into recombinant PCP apo-protein (RFPCP) and into a mutated protein with an altered environment near Per-614. Steady-state and transient optical spectroscopic experiments comparing the RFPCP complex with the reconstituted mutant protein identify specific amino acid-induced spectral shifts. The spectroscopic assignments are reinforced by a determination of the structures of both RFPCP and the mutant by x-ray crystallography to a resolution better than 1.5 A. RFPCP and mutated RFPCP are unique in representing crystal structures of in vitro reconstituted light-harvesting pigment-protein complexes. Topics: Binding Sites; Carotenoids; Chlorophyll; Chlorophyll A; Crystallography, X-Ray; Models, Molecular; Mutant Proteins; Protein Isoforms; Protein Multimerization; Protein Structure, Secondary; Protozoan Proteins; Recombinant Proteins; Spectrum Analysis | 2009 |
Spectroscopic properties of the peridinins involved in chlorophyll triplet quenching in high-salt peridinin-chlorophyll a-protein from Amphidinium carterae as revealed by optically detected magnetic resonance, pulse EPR and pulse ENDOR spectroscopies.
The photoexcited triplet state of the carotenoid peridinin in the high-salt peridinin-chlorophyll a-protein (HSPCP) of the dinoflagellate Amphidinium carterae was investigated by ODMR (optically detected magnetic resonance), pulse EPR and pulse ENDOR spectroscopies. The properties of peridinins associated to the triplet state formation in HSPCP were compared to those of peridinins involved in triplet state population in the main-form peridinin-chlorophyll protein (MFPCP), previously reported. In HSPCP no signals due to the presence of chlorophyll triplet state have been detected, during either steady-state illumination or laser-pulse excitation, meaning that peridinins play the photo-protective role with 100% efficiency as in MFPCP. The general spectroscopic features of the peridinin triplet state are very similar in the two complexes and allow drawing the conclusion that the triplet formation pathway and the triplet localization in one specific peridinin in each subcluster are the same in HSPCP and MFPCP. However some significant differences also emerged from the analysis of the spectra. Zero field splitting parameters of the peridinin triplet states are slightly smaller in HSPCP and small changes are also observed for the hyperfine splittings measured by pulse ENDOR and assigned to the beta-protons belonging to one of the two methyl groups present in the conjugated chain, (a(iso)=10.3 MHz in HSPCP vs a(iso)=10.6 MHz in MFPCP). The differences are explained in terms of local distortion of the tails of the conjugated chains of the peridinin molecules, in agreement with the conformational data resulting from the X-ray structures of the two complexes. Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Electron Spin Resonance Spectroscopy; Light; Magnetic Resonance Spectroscopy; Molecular Structure; Salts | 2008 |
Microalgal mediation of ripple mobility.
The interaction between physical and biological factors responsible for the cessation of ripple migration on a sandy intertidal flat was examined during a microalgal bloom period in late winter/early spring, as part of a wider study into the biostabilisation of intertidal sediments. Ripple positions and ripple geometry were monitored, and surface sediment was sampled, at weekly intervals over a 5-week period. Ripples remained in the same position for at least 4 weeks, during which time there was a progressive reduction in bedform height (smoothing) and deposition of some 1.5 cm sediment, mainly in the ripple troughs (surface levelling). The mean chlorophyll a (chl a) sediment content was 6.0 microg gDW(-1) (DW: dry weight) (0-1 mm depth fraction), with a maximum value of 7.4 microg gDW(-1) half way through the bloom. Mean colloidal-S carbohydrate (S: saline extraction) content was 131 microg GE gDW(-1) (GE: glucose equivalent) (0-1 mm), with a maximum of 261 microg GE gDW(-1 )towards the end of the bloom. Important accessory pigments were peridinin (indicative of dinophytes) and fucoxanthin (diatoms). Stepwise multiple regression showed that peridinin was the best predictor of chl a. For the first time, in situ evidence for the mediation of (wave) ripple migration by microalgae is provided. Results indicate that diatoms, and quite possibly dinophytes, can have a significant effect on intertidal flat ripple mobility on a temporal scale of weeks. In addition, microalgal effects appear capable of effecting a reduction in bed roughness on a spatial scale of up to 10(-2 )m, with a subsequent reduction in bottom stress and bed erodability. It is suggested that a unique combination of environmental conditions, in conjunction with the microalgal bloom(s), promoted the initial cessation of ripple movement, and that stationary-phase, diatom-derived extracellular polymeric substances (EPS) (and possibly dinophyte-derived EPS) may have prolonged the condition. It is reasonable to suppose that ripple stabilisation by similar processes may have contributed to ripple mark preservation in the geological record. A conceptual model of sandy intertidal flat processes is presented, illustrating two conditions: (i) a low EPS/microalgae sediment content with low ripple stabilisation and preservation potential; and (ii) a high EPS/microalgae content with higher preservation potential. Topics: Carbohydrates; Carotenoids; Chlorophyll; Chlorophyll A; England; Environmental Microbiology; Eukaryota; Geologic Sediments; Water Movements; Xanthophylls; Zeaxanthins | 2008 |
Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm(-1). In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system. Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Fluorescence; Light-Harvesting Protein Complexes; Protein Conformation; Protozoan Proteins; Spectrometry, Fluorescence | 2007 |
Femtosecond time-resolved absorption spectroscopy of main-form and high-salt peridinin-chlorophyll a-proteins at low temperatures.
Steady-state and femtosecond time-resolved optical methods have been used to compare the spectroscopic features and energy transfer dynamics of two systematically different light-harvesting complexes from the dinoflagellate Amphidinium carterae: main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a-proteins. Pigment analysis and X-ray diffraction structure determinations [Hofmann, E., Wrench, P. M., Sharples, F. P., Hiller, R. G., Welte, W., Diederichs, K. (1996) Science 272, 1788-1791; T. Schulte, F. P. Sharples, R. G. Hiller, and E. Hofmann, unpublished results] have revealed the composition and geometric arrangements of the protein-bound chromophores. The MFPCP contains eight peridinins and two chlorophyll (Chl) a, whereas the HSPCP has six peridinins and two Chl a, but both have very similar pigment orientations. Analysis of the absorption spectra has shown that the peridinins and Chls absorb at different wavelengths in the two complexes. Also, in the HSPCP complex, the Qy transitions of the Chls are split into two well-resolved bands. Quantum computations by modified neglect of differential overlap with partial single and double configuration interaction (MNDO-PSDCI) methods have revealed that charged amino acid residues within 8 A of the pigment molecules are responsible for the observed spectral shifts. Femtosecond time-resolved optical spectroscopic kinetic data from both complexes show ultrafast (<130 fs) and slower (approximately 2 ps) pathways for energy transfer from the peridinin excited singlet states to Chl. The Chl-to-Chl energy transfer rate constant for both complexes was measured and is discussed in terms of the Förster mechanism. It was found that, upon direct Chl excitation, the Chl-to-Chl energy transfer rate constant for MFPCP was a factor of 4.2 larger than for HSPCP. It is suggested that this difference arises from a combination of factors including distance between Chls, spectral overlap, and the presence of two additional peridinins in MFPCP that act as polarizable units enhancing the rate of Chl-to-Chl energy transfer. The study has revealed specific pigment-protein interactions that control the spectroscopic features and energy transfer dynamics of these light-harvesting complexes. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Cold Temperature; Models, Molecular; Protein Conformation; X-Ray Diffraction | 2006 |
Reconstitution of the peridinin-chlorophyll a protein (PCP): evidence for functional flexibility in chlorophyll binding.
The coding regions for the N-domain, and full length peridinin-chlorophyll a apoprotein (full length PCP), were expressed in Escherichia coli. The apoproteins formed inclusion bodies from which the peptides could be released by hot buffer. Both the above constructs were reconstituted by addition of a total pigment extract from native PCP. After purification by ion exchange chromatography, the absorbance, fluorescence excitation and CD spectra resembled those of the native PCP. Energy transfer from peridinin to Chl a was restored and a specific fluorescence activity calculated which was approximately 86% of that of native PCP. Size exclusion analysis and CD spectra showed that the N-domain PCP dimerized on reconstitution. Chl a could be replaced by Chl b, 3-acetyl Chl a, Chl d and Bchl using the N-domain apo protein. The specific fluorescence activity was the same for constructs with Chl a, 3-acetyl Chl a, and Chl d but significantly reduced for those made with Chl b. Reconstitutions with mixtures of chlorophylls were also made with eg Chl b and Chl d and energy transfer from the higher energy Qy band to the lower was demonstrated. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Protein Binding; Protein Structure, Tertiary; Protozoan Proteins; Spectrum Analysis | 2005 |
Spectroscopic properties of the main-form and high-salt peridinin-chlorophyll a proteins from Amphidinium carterae.
The main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a proteins from the dinoflagellate Amphidinium carterae were investigated using absorption, fluorescence, fluorescence excitation, two-photon, and fast-transient optical spectroscopy. Pigment analysis has demonstrated previously that MFPCP contains eight peridinins and two chlorophyll (Chl) a molecules, whereas HSPCP has six peridinins and two Chl a molecules [Sharples, F. P., et al. (1996) Biochim. Biophys. Acta 1276, 117-123]. Absorption spectra of the complexes were recorded at 10 K and analyzed in the 400-600 nm region by summing the individual 10 K spectra of Chl a and peridinin recorded in 2-MTHF. The absorption spectral profiles of the complexes in the Q(y) region between 650 and 700 nm were fit using Gaussian functions. The absorption and fluorescence spectra from both complexes exhibit several distinguishing features that become evident only at cryogenic temperatures. In particular, at low temperatures the Q(y) transitions of the Chls bound in the HSPCP complex are split into two well-resolved bands. Fluorescence excitation spectroscopy has revealed that the peridinin-to-Chl a energy transfer efficiency is high (>95%). Transient absorption spectroscopy has been used to measure the rate of energy transfer between the two bound Chls which is a factor of 2.9 slower in HSPCP than in MFPCP. The kinetic data are interpreted in terms of the Förster mechanism describing energy transfer between weakly coupled, spatially fixed, donor-acceptor Chl a molecules. The study provides insight into the molecular factors that control energy transfer in this class of light-harvesting pigment-protein complexes. Topics: Ammonium Sulfate; Animals; Buffers; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Freezing; Photons; Pigments, Biological; Protozoan Proteins; Sodium Acetate; Sodium Chloride; Spectrometry, Fluorescence; Spectrophotometry; Spectrum Analysis; Temperature | 2004 |
Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico.
Cochlodinium polykrikoides was the species responsible for the discoloration that occurred between September 15th and 27th, 2000 in a shallow coastal lagoon located in the southern part of the Bahia de La Paz, on the west side of the Gulf of California. Blooms of C. polykrikoides were observed four days after two rainy days with a seawater temperature of 29 to 31 degrees C. Nutrient concentration ranges during the bloom were 0.165-0.897 microM NO2+NO3, 0.16-3.25 microM PO4, and 1.0-35.36 microM SiO4. Abundance of C. polykrikoides ranged from 360 x 10(3) to 7.05 x 10(6)/cells l(-1). Biomass expressed in terms of chlorophyll a was high, ranging from 2.7 to 56.8 mg/m3. A typical dinoflagellate pigment profile (chlorophyll a and c, peridinin, diadinoxantin, and beta-carotene) was recorded. In this study, the red tide occurred in front of several fish and shrimp-culture ponds. No PST toxins were found in the samples. However, 180 fish were found dead in the infected fish-pond; the gills were the most affected part. C. polykrikoides is a cyst-forming species that recurs in this area. New blooms were observed in November 2000 and September-November 2001 in the same area. Anthropogenic activities, such as eutrophication caused by water discharge in this shallow lagoon, and nutrient enrichment in the culture ponds, as well as effects from precipitation and wind stress, could have favored the outbreak of this dinoflagellate. Topics: Animals; Anions; Antioxidants; Biomass; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Ecosystem; Environmental Monitoring; Eutrophication; Fisheries; Marine Toxins; Mexico; Phytoplankton; Population Dynamics; Seawater; Silicates; Temperature; Time Factors | 2004 |
Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae.
Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates. Its high-resolution (2.0 angstrom) x-ray structure reveals a noncrystallographic trimer in which each polypeptide contains an unusual jellyroll fold of the alpha-helical amino- and carboxyl-terminal domains. These domains constitute a scaffold with pseudo-twofold symmetry surrounding a hydrophobic cavity filled by two lipid, eight peridinin, and two chlorophyll a molecules. The structural basis for efficient excitonic energy transfer from peridinin to chlorophyll is found in the clustering of peridinins around the chlorophylls at van der Waals distances. Topics: Animals; Carotenoids; Chlorophyll; Chlorophyll A; Crystallography, X-Ray; Dinoflagellida; Energy Transfer; Hydrogen Bonding; Models, Molecular; Molecular Conformation; Photosynthesis; Protein Conformation; Protein Folding; Protein Structure, Secondary; Protozoan Proteins | 1996 |
A novel peridinin-chlorophyll a protein (PCP) from the marine dinoflagellate Alexandrium cohorticula: a high pigment content and plural spectral forms of peridinin and chlorophyll a.
A new type of peridinin-chlorophyll a protein (PCP) was isolated from the marine dinoflagellate Alexandrium cohorticula. Unlike previous studies. PCP was obtained as a single component in the presence of a protease inhibitor. The monomer had a molecular mass of 37 kDa with 12 peridinin molecules associated with 2 chl a molecules. This pigment content was much higher than that reported previously. We observed a partial amino acid sequence of the N-terminus that is novel among photosynthetic pigment-protein complexes. Magnetic circular dichroism clearly indicated that chl a in PCP had monomeric features. Multiple spectral components were suggested for both chl a and peridinin. Based on the high pigment content, the optical properties were compared with those for a reported PCP containing 4 chl a and 1 peridinin. Topics: Amino Acid Sequence; Animals; Carotenoids; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Chromatography, Ion Exchange; Dinoflagellida; Molecular Sequence Data; Pigments, Biological; Protozoan Proteins; Spectrometry, Fluorescence; Spectrophotometry | 1994 |