pheophytin-a has been researched along with metolachlor* in 7 studies
7 other study(ies) available for pheophytin-a and metolachlor
Article | Year |
---|---|
Reproductive cycle progression arrest and modification of cell morphology (shape and biovolume) in the alga Pseudokirchneriella subcapitata exposed to metolachlor.
Metolachlor (MET) is an herbicide widely used and frequently found (at μg L Topics: Acetamides; Chlorophyceae; Chlorophyll A; Dose-Response Relationship, Drug; Herbicides; Microalgae; Photosynthesis; Reproduction; Water Pollutants, Chemical | 2020 |
Enantioselective Toxicity of Chiral Herbicide Metolachlor to Microcystis aeruginosa.
The enantioselective effects of chiral herbicides on aquatic organisms have received increasing attention. As one kind of freshwater algae responsible for most algal blooms, Microcystis aeruginosa can produce hepatotoxic microcystin and cause serious health concerns for drinking water. Thus, the effects of chiral herbicides on M. aeruginosa are of vital significance but poorly understood, especially as the structures of chiral herbicides become more complex. In this study, the enantioselective effects of four metolachlor enantiomers based on carbon center and axis chirality on M. aeruginosa were investigated for the first time at an enantiomeric level. The results of the investigation into algal growth inhibition, chlorophyll a content, and cell integrity indicated that ( S)-metolachlor [( S)-Met] was significantly more toxic than any other isomer. The toxicity ranking of different enantiomers at the highest concentration (15 mg/L) against M. aeruginosa was ( S)-Met > (α R,1' S)-Met > (α S,1' S)-Met > (α S,1' R)-Met > (α R,1' R)-Met, with (α S,1' S)-Met and (α R,1' S)-Met displaying a synergistic effect. Additionally, the Fe distribution in M. aeruginosa presented distinct enantioselectivity, which may contribute to the enantioselective toxicity of metolachlor. Furthermore, metolachlor upregulated the expression of genes mcyD and mcyH in an enantioselective manner, indicating that this herbicide can potentially promote the synthesis and efflux of microcystin, thus aggravating agricultural water contamination to different extents. Overall, this study will help to understand the ecotoxicity of metolachlor at a deeper level and provide theoretical insights into the enantioselective behaviors of metolachlor. Topics: Acetamides; Chlorophyll A; Herbicides; Microcystins; Microcystis; Stereoisomerism | 2019 |
A novel function of sanshools: the alleviation of injury from metolachlor in rice seedlings.
Szechuan peppers are extensively used as a spice and in traditional medicine in Asia, primarily because of its active compounds, sanshools (S). However, there is only limited mention in agriculture, and there are no papers reporting its use as an herbicide safener. In this study, we provide the first evidence that S can effectively alleviate rice-seedling injury from metolachlor (M). We observed that the M-treated (0.25 μM) rice seedlings, which were 56.0%, 66.0%, and 57.0% of the non-treated control in shoot height, root length, and fresh biomass, respectively, were recovered by S to 93.1%, 97.6%, and 94.8%, respectively. The emergence rate was enhanced to over 80% in the M+S treatment, whereas it was below 60% in the M treatment. This M+S mixture elevated the rice-seedling root activity to higher than 87.0% of the value for the non-treated control. The activity of glutathione transferases in the combined treatments approximately doubles that of the M treatment and quadruples that of the non-treated controls. This effect was positively correlated with the induced expression of OsGSTU3. Our results suggest that S may represent a new group of safeners and enable the possibility of using these compounds for improving plant production or protecting rice from the phytotoxicity of metolachlor. Topics: Acetamides; Amides; Chlorophyll; Chlorophyll A; Gene Expression Regulation, Plant; Glutathione Transferase; Herbicides; Oryza; Plant Roots; Plant Shoots; Protective Agents; Seedlings | 2014 |
Quantification of toxic effects of the herbicide metolachlor on marine microalgae Ditylum brightwellii (Bacillariophyceae), Prorocentrum minimum (Dinophyceae), and Tetraselmis suecica (Chlorophyceae).
Toxic effects of the herbicide metolachlor (MC) were evaluated for three marine microalgae, Tetraselmis suecica (chlorophyte), Ditylum brightwellii (diatom), and Prorocentrum minimum (dinoflagellate). MC showed a significant reduction in cell counts and chlorophyll a levels. Median effective concentration (EC50) was calculated based on chlorophyll a levels after a 72-h MC exposure. EC50 values for T. suecica, D. brightwellii, and P. minimum were 21.3, 0.423, and 0.07 mg/L, respectively. These values showed that the dinoflagellate was most sensitive when exposed to the herbicide, at a concentration comparable to freshwater algae, suggesting its potential as an appropriate model organism for ecotoxicity assessments in marine environments. Topics: Acetamides; Alveolata; Aquatic Organisms; Cell Count; Chlorophyll; Chlorophyll A; Chlorophyta; Diatoms; Herbicides | 2013 |
Responses of phytoplankton and Hyalella azteca to agrichemical mixtures in a constructed wetland mesocosm.
We assessed the capability of a constructed wetland to mitigate toxicity of a variety of possible mixtures, such as nutrients only (NO) (nitrogen [N], phosphorus [P]), pesticides only (PO) (atrazine, S-metolachlor, permethrin), and nutrients + pesticides on phytoplankton chlorophyll-a, on 48-h aqueous Hyalella azteca survival and 10-day sediment H. azteca survival and growth. Water and sediment were collected at 10-, 20-, and 40-m distances from inflow and analyzed for nutrients, pesticides, chlorophyll-a, and H. azteca laboratory bioassays. Phytoplankton chlorophyll-a increased 4- to 10 -fold at 7 days after NO treatment. However, responses of chlorophyll-a to PO and nutrients + pesticides were more complex with associated decreases at only 20 m for pesticides only and 10 and 40 m for nutrients + pesticides treatments. H. azteca aqueous survival decreased within the first 48 h of dosing at 10- and 20-m distances during PO and nutrients + pesticides treatments in association with permethrin concentrations. H. azteca sediment survival was unaffected, whereas 10-day growth decreased within 1 day of dosing at all sites during nutrients + pesticides treatment. Constructed wetlands were shown to be an effective agricultural best-management tool for trapping pollutants and mitigating ecological impacts of run-off in agricultural watersheds. Topics: Acetamides; Amphipoda; Animals; Atrazine; Chlorophyll; Chlorophyll A; Environmental Monitoring; Herbicides; Insecticides; Mississippi; Nitrogen; Permethrin; Phosphorus; Phytoplankton; Water Pollutants, Chemical; Wetlands | 2013 |
Sensitivity of freshwater periphytic diatoms to agricultural herbicides.
The biomonitoring of pesticide pollution in streams and rivers using algae such as diatoms remains difficult. The responses of diatom communities to toxic stress in stream water are disturbed by the variations of environmental parameters. In this study, periphytic algae collected in situ were exposed under controlled conditions to two major herbicides used in French agriculture (isoproturon and s-metolachlor). Three exposure regimes were tested: 5 and 30 microg L(-1) for 6 days and 30 microg L(-1) for 3 days followed by a recovery period of 3 days. The algal biomasses were assessed from pigment concentrations (chlorophyll a and c) and from live cell density. The highest concentration (30 microg L(-1)) of isoproturon inhibited the biomass increase statistically significantly. In periphyton exposed to 5 and 30 microg L(-1) of s-metolachlor, chlorophyll c concentration and live cell density were also statistically significantly lower than in the control. Periphyton left to recover after reduced exposure duration (3 days) showed higher growth rates after treatment with s-metolachlor than with isoproturon. Taxonomic identifications showed that species like Melosira varians, Nitzschia dissipata and Cocconeis placentula were not affected by the herbicide exposure. Other species like Eolimna minima and Navicula reichardtiana were more sensitive. Studying diatoms according to their trophic mode showed that facultative heterotroph species were statistically significantly favoured by isoproturon exposure at the highest concentration. Results obtained with s-metolachlor exposure showed a disturbance of cell multiplication rather than that of photosynthesis. These results suggest that photosynthesis inhibitors like isoproturon favour species able to survive when the autotroph mode is inhibited. Topics: Acetamides; Biomass; Cell Count; Chlorophyll; Chlorophyll A; Chromatography, High Pressure Liquid; Diatoms; Environmental Monitoring; Fresh Water; Herbicides; Phenylurea Compounds; Rivers; Solid Phase Extraction; Statistics, Nonparametric; Temperature; Water Pollutants, Chemical | 2009 |
Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa.
The toxicity of the chiral herbicides rac-metolachlor and S-metolachlor to Chlorella pyrenoidosa was determined and compared in this study, based on four different test endpoints: the growth inhibition rate, the chlorophyll a and chlorophyll b concentration, the catalase activity, and the ultrastructural morphology of cells. The 24, 48, 72, and 96h EC(50) values of rac-metolachlor were 0.196, 0.241, 0.177 and 0.152mgL(-1), respectively; these values were higher than those of S-metolachlor, which were 0.116, 0.106, 0.081 and 0.068mgL(-1), respectively. This indicates that S-metolachlor was more toxic to C. pyrenoidosa than rac-metolachlor. The Chla and Chlb concentration of C. pyrenoidosa treated by rac-metolachlor was higher than that treated by S-metolachlor. In general, the catalase activity of C. pyrenoidosa treated by S-metolachlor was higher than that exposed to rac-metolachlor, and catalase activity was inhibited at high concentrations of both herbicides. The ultrastructural morphology of cells grown in the two herbicides was observed by transmission electron microscopy. The cell wall separated from the cell membrane, accumulated starch granules were observed in the chloroplast, and some lipid droplets and unknown electron-opaque deposits were also observed in the cytoplasm. The mechanism of the toxicity of rac- and S-metolachlor toxicity to C. pyrenoidosa was explored, and the enantioselective toxicity of rac- and S-metolachlor to C. pyrenoidosa was determined. These results will help to develop an understanding of the biologically mediated environmental processes of rac- and S-metolachlor. Topics: Acetamides; Catalase; Cell Growth Processes; Chlorella; Chlorophyll; Chlorophyll A; Herbicides; Stereoisomerism | 2009 |