pheophytin-a has been researched along with 4-nitrophenol* in 1 studies
1 other study(ies) available for pheophytin-a and 4-nitrophenol
Article | Year |
---|---|
Unique fluorescence properties of a cyanobacterium Gloeobacter violaceus PCC 7421: reasons for absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C.
We investigated the reason for the absence of the long-wavelength PSI Chl a fluorescence at -196 degrees C in the cyanobacterium Gloeobacter violaceus using two methods: p-nitrothiophenol (p-NTP) treatment and time-resolved fluorescence spectra. The p-NTP treatment showed that PSII Chl a fluorescence was specifically affected in a manner similar to that for Synechocystis sp. PCC 6803 and spinach chloroplasts, although there were no components modified by the p-NTP treatment, indicating an absence of the long-wavelength PSI Chl a fluorescence. The time-resolved fluorescence spectra with a time resolution of 1.3 ps and spectral resolution of 1.0 nm gave no indication of the presence of the long-wavelength PSI fluorescence in the wavelength region between 700 nm and 760 nm, indicating that a very fast energy transfer among Chl a molecules could not account for the absence of the long-wavelength PSI fluorescence. From these data, it seems that the absence of the long-wavelength PSI fluorescence is due to a lack of the formation of a component responsible for the fluorescence at -196 degrees C, which may originate from a difference in the amino acid sequence. We discuss the significance of this phenomenon and interpret our findings in terms of the evolution of cyanobacteria. Topics: Chlorophyll; Chlorophyll A; Cold Temperature; Cyanobacteria; Nitrophenols; Photosynthetic Reaction Center Complex Proteins; Spectrometry, Fluorescence; Time Factors | 2002 |