pheophorbide-a has been researched along with chlorin* in 5 studies
5 other study(ies) available for pheophorbide-a and chlorin
Article | Year |
---|---|
Conjugation of chlorins with spermine enhances phototoxicity to cancer cells in vitro.
Photodynamic therapy (PDT) is one of the most promising methods of specific cancer treatment. However, commercially available photosensitizers (PSs) show significant drawbacks, such as side toxicity, low penetration ability, low blood solubility, low tumor selectivity etc. In addition, as was shown previously, a conjugation of polyamines with several toxic agents led to an increased toxicity to cancer cells. Here, we synthesized conjugates of two chlorine photosensitizers, purpurin 18 and pheophorbide a, with spermine in natural and Boc-protected form. Using specialized software, we calculated octanol-water partition coefficients for single protonation state (logP) of single PSs and PS/spermine conjugates. We found that the addition of spermine to chlorine PSs shifted the logP towards higher hydrophilicity in comparison to logP of single chlorines. In vitro studies on several cancer cells indicated that conjugation of purpurin 18 with spermine increased its retention in cancer cells. Using various concentrations of this conjugate, we found that lower concentrations (under 0.2μM) of purpurin 18/spermine conjugate launched apoptosis in HeLa cells. This combined with its high phototoxicity makes the purpurin 18/spermine conjugate a promising photosensitizer for PDT. Obtained results might serve as a basis for further studies of this potential third-generation PS on mammalian models in vivo. Topics: Animals; Apoptosis; Cell Line, Tumor; Chlorophyll; HeLa Cells; Humans; Hydrophobic and Hydrophilic Interactions; Photochemotherapy; Photosensitizing Agents; Porphyrins; Spermine | 2017 |
[Distribution Characteristics of Sedimentary Pigments in the Changjiang Estuary and Zhe-Min Coast and its Implications].
Compositions and contents of sedimentary pigments were examined using high performance liquid chromatography in order to discuss the spatial distributions of phytoplankton primary production, phytoplankton functional type and the preservation efficiency of phytoplankton pigments and their influencing factors. The results showed that: chloropigments [Chlorins, including chlorophyll-a (Chl-a) and pheopigments (Pheo-a), such as pheophytin-a (PHtin-a), pheophorbide-a (PHide-a), pPheophytin-a (pPHtin-a), sterol chlorin esters (SCEs) and carotenol chlorin esters (CCEs)] were the major type of sedimentary pigments. The nutrients inputs from Changjiang Diluted Water and upwelling in the Zhe-Min coastal mud area were the major cause for the patchy distribution with high sedimentary chloropigment contents. Carotenoid contents showed no trending changes and exhibited high values in the Changjiang Estuary and Zhe-Min Coasts. Based on the relative proportions of each diagnostic carotenoid to the total diagnostic carotenoids in the sediments, the relative contributions of diatoms, dinoflagellates, prymnesiophytes, prasinophytes, cryptophytes and cyanobacterias in the phytoplankton fuctional types were 48.8% +/- 17.4%, 10.7% +/- 11.5%, 8.1% +/- 7.2%, 18.6% +/- 8.2%, 9.4% +/- 6.4% and 4.3% +/- 3.2%, respectively. The preference for external environmental conditions (e.g., nutrient level and water salinity) was the main cause for the decreasing trends of diatoms and dinoflagellates proportions and the increasing trends of prasinophytes, cryptophytes and cyanobacterias seawards. Based on the spatial distribution of Chl-a/Pheo-a ratios, the higher preservation efficiencies of sedimentary pigments in the coastal regions (e.g., outer edge of maximum turbidity zone in the Changjiang Estuary, mouth of the Hangzhou Bay and upwelling region in the Zhe-Min Coast) were mainly due to the higher sedimentation rate and seasonal occurrences of hypoxia in bottom water, and these regions with higher sedimentary pigment preservation efficiencies were probably ideal areas for the marine eco-environmental evolutions. The bad sedimentary environment caused by the water exchange inside and outside of Hangzhou Bay was the dominant reason for the low sedimentary pigment contents and preservation efficiencies in this region. Topics: Carotenoids; China; Chlorophyll; Chlorophyll A; Cryptophyta; Diatoms; Dinoflagellida; Estuaries; Geologic Sediments; Haptophyta; Phytoplankton; Porphyrins; Water | 2015 |
Hydrogen bond driven self-assembled C2-symmetric chlorin syn dimers; unorthodox models for chlorophyll 'special pairs' in photosynthetic reaction centres.
Amide linked pyro-pheophorbide a dimers, equipped with a suitable length of linkage, assemble in non-polar solvents by internal hydrogen bonding into C2-symmetric stacked structures as evidenced by UV-vis, fluorescence, IR, CD, 1H NMR spectroscopy and DFT molecular modelling studies. Topics: Amides; Chlorophyll; Circular Dichroism; Dimerization; Fluorescence; Hydrogen Bonding; Magnetic Resonance Spectroscopy; Molecular Structure; Porphyrins; Solvents; X-Ray Diffraction | 2009 |
Spectroscopic analysis of chlorophyll model complexes: methyl ester ClFe(III)pheophorbides.
As models for chlorophyll a (Chl a), methyl ester ClFe(III)pheophorbides (1, pheophorbide a; 2, mesopheophorbide a; and 3, mesopyropheophorbide a) were examined by Fourier transform infrared (FTIR) absorption and resonance Raman (RR) spectroscopy. The infrared (IR) chlorin band above 1600 cm-1, assigned as a Ca-Cm mode (Andersson et al. (1987) J. Am. Chem. Soc. 109, 2908-2916) is shown to be metal-sensitive and responsive to spin state and coordination number for dihydroporphyrins, as well as being diagnostic for the chlorin vs. porphyrin or bacteriochlorin macrocycle. Frequency variations for this metallochlorin IR band thus parallel those of the v10 RR mode of porphyrins in their predictive utility. Qy excitation SERRS spectra of Chl a were compared with Qy excitation RR spectra of 1 and methyl Ni(II)pyropheophorbide a. The data demonstrate that 5-coordinate ClFe(III)pheophorbides are better models for chlorophylls than are ruffled 4-coordinate Ni(II)pheophorbides. Major spectral differences between the three chlorophyll models are associated with the C-9 keto and/or C-10 carbomethoxy vibrational modes. The approx. 1700 cm-1 IR band was formerly assigned solely to v(C = O) of the C-9 keto group. However, this IR feature shifts down to approx. 1685 cm-1 and nearly doubles in intensity when the C-10 carbomethoxy is removed, as for 3. Similar frequency downshifts coupled with intensity increases in the IR are found in the literature on chlorophylls. RR spectra of pheophorbides having the C-10 carbomethoxy group (1 and 2) have bands at both approx. 1700 and approx. 1735 cm-1. However, the C-9 keto v(C = O) mode of pyrophorbins also downshifts to approx. 1685 cm-1, as in the IR spectra. The approx. 1735 cm-1 ester RR mode disappears in the case of pyrophorbins, and is never RR active for nonconjugated esters of porphyrins or chlorins. These data demonstrate an interaction between the C-10 and C-9 carbonyls of phorbins. They also indicate that phorbins tend toward conjugation of the C-10 ester. Biological examples of such conjugation effects have recently been reported, e.g., for the Chl a pi-cation radical (Heald et al. (1988) J. Phys. Chem. 92, 4820-4824). Because the phorbin E ring is the major structural feature distinguishing chlorophylls from non-photosynthetic systems, the participation of the C-10 ester in ring conjugation is suggestive of its biological importance. Topics: Chlorophyll; Fourier Analysis; Porphyrins; Spectrophotometry; Spectrophotometry, Infrared; Spectrum Analysis; Spectrum Analysis, Raman | 1989 |
Time-resolved fluorescence spectroscopy of hematoporphyrin, mesoporphyrin, pheophorbide a and chlorin e6 in ethanol and aqueous solution.
The fluorescence decay I(t) and time-resolved spectra I(lambda, t) of some porphyrins and chlorins in ethanol and phosphate-buffered aqueous solution were investigated with a time-correlated single-photon-counting apparatus with a mode-locked Ar+ laser (514.5 nm) as the excitation source. The fluorescence of hematoporphyrin, mesoporphyrin and pheophorbide aa is considerably influenced by the conditions of aggregation (these compounds undergo aggregation in phosphate-buffered solution but not in ethanolic solution). The fluorescence decay of chlorin e6 which remains monomeric in both solvents is single exponential in all cases. The fluorescence spectra of hematoporphyrin, mesoporphyrin and pheophorbide a in phosphate-buffered solution are shifted with respect to the spectra obtained in ethanol; moreover, a new emission band (X band) appears, whose intensity increases on increasing the amount of equilibrium aggregates and shows a fast fluorescence decay. For hematoporphyrin and mesoporphyrin the appearance of the X band emission appears to be correlated with irreversible photoprocesses leading to fluorescent photoproducts. Analysis of the reported fluorescence spectra of cancer cells after incubation with hematoporphyrin derivative suggests that the fluorescent photoproducts might be formed also in vivo. Topics: Chlorophyll; Ethanol; Hematoporphyrins; Kinetics; Mesoporphyrins; Porphyrins; Solutions; Spectrometry, Fluorescence; Structure-Activity Relationship; Time Factors; Water | 1987 |