phenytoin has been researched along with pimozide in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (12.50) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 6 (37.50) | 29.6817 |
2010's | 8 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andrews, PR; Craik, DJ; Martin, JL | 1 |
Topliss, JG; Yoshida, F | 1 |
Du, LP; Li, MY; Tsai, KC; Xia, L; You, QD | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Sen, S; Sinha, N | 1 |
Cooper, J; Cui, Y; Fink, M; Gavaghan, DJ; Heath, BM; McMahon, NC; Mirams, GR; Noble, D; Sher, A | 1 |
Brown, AM; Bruening-Wright, A; Kramer, J; Kuryshev, YA; Myatt, G; Obejero-Paz, CA; Verducci, JS | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
Johnson, C; Mitchell, J; Stuckey, M | 1 |
Das, B; Saha, SP | 1 |
3 review(s) available for phenytoin and pimozide
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
Psychopharmacological treatment of anorexia nervosa and bulimia. Review and synthesis.
Topics: Adrenocorticotropic Hormone; Anorexia Nervosa; Antidepressive Agents, Tricyclic; Chlorpromazine; Cyproheptadine; Dopamine; Feeding and Eating Disorders; Female; Humans; Hyperphagia; Levodopa; Lithium; Lithium Carbonate; Male; Naloxone; Phenytoin; Pimozide; Serotonin; Zinc | 1983 |
Trigeminal neuralgia: current concepts and management.
Topics: Analgesics, Non-Narcotic; Baclofen; Carbamazepine; Humans; Phenytoin; Pimozide; Radiosurgery; Trigeminal Ganglion; Trigeminal Neuralgia | 2001 |
13 other study(ies) available for phenytoin and pimozide
Article | Year |
---|---|
Functional group contributions to drug-receptor interactions.
Topics: Animals; Calorimetry; Kinetics; Models, Biological; Protein Binding; Receptors, Cell Surface; Receptors, Drug; Structure-Activity Relationship | 1984 |
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
The pharmacophore hypotheses of I(Kr) potassium channel blockers: novel class III antiarrhythmic agents.
Topics: Anti-Arrhythmia Agents; Models, Biological; Models, Molecular; Potassium Channel Blockers; Potassium Channels; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical | 2004 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |
Simulation of multiple ion channel block provides improved early prediction of compounds' clinical torsadogenic risk.
Topics: Action Potentials; Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dogs; Dose-Response Relationship, Drug; ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Guinea Pigs; HEK293 Cells; Humans; Ion Channels; Kinetics; Models, Cardiovascular; NAV1.5 Voltage-Gated Sodium Channel; Patch-Clamp Techniques; Potassium Channel Blockers; Rabbits; Risk Assessment; Risk Factors; Sodium Channel Blockers; Sodium Channels; Torsades de Pointes; Transfection | 2011 |
MICE models: superior to the HERG model in predicting Torsade de Pointes.
Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Humans; Models, Theoretical; Patch-Clamp Techniques; Predictive Value of Tests; Torsades de Pointes | 2013 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |