phenyldehydroalanine has been researched along with dehydroalanine* in 4 studies
4 other study(ies) available for phenyldehydroalanine and dehydroalanine
Article | Year |
---|---|
Synthesis of Tetrapeptides Containing Dehydroalanine, Dehydrophenylalanine and Oxazole as Building Blocks for Construction of Foldamers and Bioinspired Catalysts.
The incorporation of dehydroamino acid or fragments of oxazole into peptide chain is accompanied by a distorted three-dimensional structure and additionally enables the introduction of non-typical side-chain substituents. Thus, such compounds could be building blocks for obtaining novel foldamers and/or artificial enzymes (artzymes). In this paper, effective synthetic procedures leading to such building blocks-tetrapeptides containing glycyldehydroalanine, glycyldehydrophenylalanine, and glycyloxazole subunits-are described. Peptides containing serine were used as substrates for their conversion into peptides containing dehydroalanine and aminomethyloxazole-4-carboxylic acid while considering possible requirements for the introduction of these fragments into long-chain peptides at the last steps of synthesis. Topics: Alanine; Oxazoles; Peptides; Phenylalanine | 2022 |
Dehydrodipeptide Hydrogelators Containing Naproxen N-Capped Tryptophan: Self-Assembly, Hydrogel Characterization, and Evaluation as Potential Drug Nanocarriers.
In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate. Topics: Alanine; Cell Line, Tumor; Circular Dichroism; Drug Carriers; Humans; Hydrogels; Hydrophobic and Hydrophilic Interactions; MCF-7 Cells; Microscopy, Electron, Transmission; Models, Theoretical; Naphthalenes; Naproxen; Phenylalanine; Rheology; Tryptophan | 2015 |
Combined effect of the DeltaPhe or DeltaAla residue and the p-nitroanilide group on a didehydropeptides conformation.
Two series of dehydropeptides of the general formulae Boc-Gly-X-Phe-p-NA, Boc-Gly-Gly-X-Phe-p-NA, Gly-X-Gly-Phe-p-NA.TFA, and Boc-Gly-X-Gly-Phe-p-NA, with X = Delta(Z)Phe and DeltaAla, were studied with NMR in DMSO and CDCl(3)-DMSO, and with CD in MeOH, MeCN, and TFE. The NMR spectra measured in DMSO suggest that peptides with the DeltaPhe residue next to Phe are folded whereas peptides with Gly between DeltaPhe and Phe are less ordered. NMR spectra of DeltaAla-containing peptides indicate that these peptides are flexible and their conformational equilibria are populated by many different conformations. The CD spectra show that conformational properties of the peptides studied are distinctly influenced by a mutual position of the dehydroamino acid residue and the p-NA group. They indicate that all dehydropeptides with the DeltaPhe residue, Boc-Gly-DeltaAla-Phe-p-NA, and Boc-Gly-Gly-DeltaAla-Phe-p-NA adopt ordered conformations in all solvents studied, presumably of the beta-turn type. The last two peptides exhibit surprising chiroptical properties. Their spectra show exciton coupling-like couplets in the region of the p-NA group absorption. This shape of CD spectra suggests a rigid, chiral conformation with a fixed disposition of the p-NA group. The CD spectra indicate that Boc-Gly-DeltaAla-Gly-Phe-p-NA and Gly-DeltaAla-Gly-Phe-p-NA.TFA are unordered, independently of the solvent. Topics: Alanine; Amides; Circular Dichroism; Crystallography; Dipeptides; Magnetic Resonance Spectroscopy; Models, Chemical; Models, Molecular; Phenylalanine; Protein Conformation; Spectroscopy, Fourier Transform Infrared | 2008 |
Synthesis of tetrapeptide p-nitrophenylanilides containing dehydroalanine and dehydrophenylalanine and their influence on cathepsin C activity.
Three dehydrotetrapeptides of rationally varying structure were prepared and tested as affectors of cathepsin C. These compounds appeared to be substrates of the enzyme, being equipotent with their classical counterparts. Thus, replacement of amino acid in a short peptide by corresponding dehydroamino acid does not prevent cathepsin C in recognizing dehydropeptide as its substrate. Topics: Alanine; Amino Acids; Anilides; Animals; Cathepsin C; Cattle; Magnetic Resonance Spectroscopy; Models, Chemical; Oligopeptides; Phenylalanine; Spleen | 2001 |