phenylalanylphenylalanine has been researched along with glycylglycine in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (16.67) | 18.7374 |
1990's | 1 (16.67) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Adler-Abramovich, L; Brahmachari, S; Bychenko, D; DeGrado, WF; Gazit, E; Kolusheva, S; Mensa, B; Schmidt, NW; Schnaider, L; Shaham-Niv, S; Shimon, LJW | 1 |
Akamatsu, M; Asao, M; Fujita, T; Iwamura, H | 1 |
Collantes, ER; Dunn, WJ | 1 |
Brandsch, M; Gebauer, S; Hartrodt, B; Knütter, I; Neubert, K; Thondorf, I | 1 |
Biegel, A; Brandsch, M; Gebauer, S; Hartrodt, B; Neubert, K; Thondorf, I | 1 |
Aldini, G; De Luca, L; Marconi, C; Pedretti, A; Regazzoni, L; Vistoli, G | 1 |
6 other study(ies) available for phenylalanylphenylalanine and glycylglycine
Article | Year |
---|---|
Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
Topics: Anti-Infective Agents; Cell Membrane; Circular Dichroism; Dipeptides; Escherichia coli; Gene Expression Regulation, Bacterial; Glycylglycine; HEK293 Cells; Humans; Microbial Sensitivity Tests; Microscopy, Electron, Scanning; Nanostructures; Phenylalanine; Stress, Physiological; Tissue Scaffolds | 2017 |
Quantitative structure-activity relationships of the bitter thresholds of amino acids, peptides, and their derivatives.
Topics: Amino Acids; Humans; Mathematics; Peptides; Structure-Activity Relationship; Taste | 1987 |
Amino acid side chain descriptors for quantitative structure-activity relationship studies of peptide analogues.
Topics: Amino Acid Sequence; Amino Acids; Bradykinin; Electrochemistry; Molecular Sequence Data; Peptides; Structure-Activity Relationship; Taste | 1995 |
Three-dimensional quantitative structure-activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1.
Topics: Carrier Proteins; Dipeptides; Drug Design; Ligands; Models, Molecular; Molecular Conformation; Peptide Transporter 1; Protein Binding; Quantitative Structure-Activity Relationship; Symporters | 2003 |
Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1.
Topics: Animals; beta-Lactams; Cell Line, Tumor; Dipeptides; Drug Design; Humans; Mammals; Models, Molecular; Oligopeptides; Peptide Transporter 1; Quantitative Structure-Activity Relationship; Substrate Specificity; Symporters | 2005 |
Fragmental modeling of hPepT2 and analysis of its binding features by docking studies and pharmacophore mapping.
Topics: Binding Sites; Computer Simulation; Drug Design; Humans; Ligands; Models, Molecular; Peptides; Protein Binding; Structural Homology, Protein; Symporters | 2011 |