phenylalanine has been researched along with troglitazone in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (20.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Smits, P; Tack, CJ | 1 |
Bell, D; McDermott, BJ | 1 |
Aljada, A; Assian, E; Dandona, P; Garg, R; Ghanim, H; Hamouda, W; Mohanty, P | 1 |
Tesz, G; Zawalich, KC; Zawalich, WS | 1 |
Dansette, PM; Jaouen, M; Johnson, EF; Macherey, AC; Mansuy, D; Marques-Soares, C; Melet, A; Sari, MA; Schoch, GA | 1 |
1 review(s) available for phenylalanine and troglitazone
Article | Year |
---|---|
New drugs for diabetes.
Topics: Carbamates; Chromans; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin Resistance; Metformin; Nateglinide; Phenylalanine; Piperidines; Thiazoles; Thiazolidinediones; Troglitazone | 1999 |
1 trial(s) available for phenylalanine and troglitazone
Article | Year |
---|---|
Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an antiinflammatory action?
Topics: Adult; Anti-Inflammatory Agents; Blood Glucose; C-Reactive Protein; Chemokine CCL2; Cholesterol; Chromans; Diabetes Mellitus; Diabetes Mellitus, Type 2; Female; Humans; I-kappa B Proteins; Insulin; Intercellular Adhesion Molecule-1; Leukocytes, Mononuclear; Linoleic Acid; Linoleic Acids; Linoleic Acids, Conjugated; Male; Middle Aged; NADPH Oxidases; Neutrophils; NF-kappa B; Obesity; Phenylalanine; Phosphoproteins; Plasminogen Activator Inhibitor 1; Reactive Oxygen Species; Thiazoles; Thiazolidinediones; Triglycerides; Troglitazone; Tyrosine | 2001 |
3 other study(ies) available for phenylalanine and troglitazone
Article | Year |
---|---|
Troglitazone does not initiate hypertrophy but can sensitise cardiomyocytes to growth effects of serum.
Topics: Animals; Cattle; Cell Differentiation; Cell Survival; Chromans; Culture Media; Dose-Response Relationship, Drug; Drug Interactions; Endothelin-1; Fetal Blood; Glucose; Heart Ventricles; Hydrogen-Ion Concentration; Hypertrophy; Hypoglycemic Agents; Insulin; Insulin-Like Growth Factor I; Male; Myocardium; Norepinephrine; Phenylalanine; Protein Kinase C; Rats; Rats, Sprague-Dawley; Tetradecanoylphorbol Acetate; Thiazoles; Thiazolidinediones; Troglitazone | 2000 |
Contrasting effects of nateglinide and rosiglitazone on insulin secretion and phospholipase C activation.
Topics: Androstadienes; Animals; Chromans; Cyclohexanes; Enzyme Activation; Glucose; Hypoglycemic Agents; Indicators and Reagents; Inositol Phosphates; Insulin; Insulin Secretion; Islets of Langerhans; Male; Nateglinide; Perfusion; Phenylalanine; Rats; Rats, Sprague-Dawley; Rosiglitazone; Signal Transduction; Thiazolidinediones; Troglitazone; Type C Phospholipases; Wortmannin | 2003 |
Analysis of human cytochrome P450 2C8 substrate specificity using a substrate pharmacophore and site-directed mutants.
Topics: Amiodarone; Animals; Arginine; Aryl Hydrocarbon Hydroxylases; Asparagine; Catalysis; Chromans; Computer Simulation; Cytochrome P-450 CYP2C8; Diclofenac; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Indoles; Isoleucine; Models, Molecular; Mutagenesis, Site-Directed; Paclitaxel; Phenylalanine; Rabbits; Serine; Substrate Specificity; Sulfonamides; Thiazolidinediones; Tretinoin; Troglitazone | 2004 |