phenylalanine has been researched along with losartan in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (50.00) | 18.2507 |
2000's | 2 (33.33) | 29.6817 |
2010's | 1 (16.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Avdeef, A; Tam, KY | 1 |
Becker, K; Brodde, OE; Heinroth-Hoffmann, I; Pönicke, K | 1 |
Bartunek, J; Lorell, BH; Thienelt, CD; Weinberg, EO | 1 |
Chappell, MC; Ferrario, CM; Iyer, SN | 1 |
Min, L; Sim, MK; Xu, XG | 1 |
Akira, T; Egi, Y; Maruyama, T; Matsumura, Y; Ohkita, M; Sasaoka, T; Takaoka, M; Tawa, M; Yamamoto, A | 1 |
6 other study(ies) available for phenylalanine and losartan
Article | Year |
---|---|
How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability?
Topics: Animals; Disease Models, Animal; Dogs; Humans; Jejunal Diseases; Kidney Diseases; Models, Biological; Permeability; Porosity; Regression Analysis | 2010 |
Trophic effect of angiotensin II in neonatal rat cardiomyocytes: role of endothelin-1 and non-myocyte cells.
Topics: Angiotensin II; Animals; Animals, Newborn; Anti-Arrhythmia Agents; Biphenyl Compounds; Cell Adhesion; Cells, Cultured; Dose-Response Relationship, Drug; Endothelin Receptor Antagonists; Endothelin-1; Endothelin-3; Endothelins; GTP-Binding Proteins; Heart; Imidazoles; Inositol; Inositol Phosphates; Isotope Labeling; Losartan; Myocardium; Peptide Fragments; Peptides, Cyclic; Pertussis Toxin; Phenylalanine; Rats; Rats, Wistar; Tetrazoles; Vasoconstrictor Agents; Virulence Factors, Bordetella | 1997 |
Load-induced growth responses in isolated adult rat hearts. Role of the AT1 receptor.
Topics: Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Enalapril; Gene Expression; Heart; Hemodynamics; Imidazoles; In Vitro Techniques; Losartan; Male; Myocardium; Phenylalanine; Protein Biosynthesis; Proto-Oncogenes; Rats; Rats, Wistar; Receptors, Angiotensin; Stress, Mechanical; Systole; Tetrazoles | 1997 |
Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system.
Topics: Angiotensin I; Angiotensin II; Animals; Antihypertensive Agents; Blood Pressure; Bradykinin; Dipeptides; Heart Rate; Hypertension; Kinetics; Lisinopril; Losartan; Male; Neprilysin; Organophosphonates; Peptide Fragments; Peptides, Cyclic; Phenylalanine; Protease Inhibitors; Rats; Rats, Inbred SHR; Renin-Angiotensin System | 1998 |
Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomyocytes and aortic smooth muscle cells.
Topics: 1-Sarcosine-8-Isoleucine Angiotensin II; Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Animals, Newborn; Aorta, Thoracic; Cells, Cultured; DNA; Imidazoles; Indomethacin; Losartan; Muscle, Smooth, Vascular; Myocardium; Peptide Fragments; Phenylalanine; Protein Biosynthesis; Pyridines; Rats; Rats, Wistar; Receptors, Angiotensin; Thymidine | 2000 |
Angiotensin II type 2 receptor-mediated inhibition of norepinephrine release in isolated rat hearts.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Bradykinin; Heart; Imidazoles; In Vitro Techniques; Losartan; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Norepinephrine; Oligopeptides; Phenylalanine; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Sympathetic Nervous System; Tranexamic Acid; Vasoconstrictor Agents | 2008 |