phenylacetic acid and sulfanilamide

phenylacetic acid has been researched along with sulfanilamide in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19901 (25.00)18.7374
1990's0 (0.00)18.2507
2000's2 (50.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Fujita, T; Nakajima, M; Nishioka, T1
Carrupt, PA; Martel, S; Ottaviani, G1
Abellán Guillén, A; Cordeiro, MN; Garrido Escudero, A; Morales Helguera, A; Pérez-Garrido, A1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1

Other Studies

4 other study(ies) available for phenylacetic acid and sulfanilamide

ArticleYear
Hydrogen-bonding parameter and its significance in quantitative structure--activity studies.
    Journal of medicinal chemistry, 1977, Volume: 20, Issue:8

    Topics: Acetylcholinesterase; Anesthetics; Benzene Derivatives; Benzenesulfonates; Carbamates; Chemical Phenomena; Chemistry; Chemistry, Physical; Hydrogen Bonding; Models, Biological; Models, Chemical; Phenoxyacetates; Solubility; Structure-Activity Relationship

1977
In silico and in vitro filters for the fast estimation of skin permeation and distribution of new chemical entities.
    Journal of medicinal chemistry, 2007, Feb-22, Volume: 50, Issue:4

    Topics: Humans; Membranes, Artificial; Models, Biological; Models, Molecular; Octanols; Permeability; Pharmaceutical Preparations; Skin Absorption; Water

2007
Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.
    Bioorganic & medicinal chemistry, 2009, Jan-15, Volume: 17, Issue:2

    Topics: beta-Cyclodextrins; Hydrophobic and Hydrophilic Interactions; Organic Chemicals; Quantitative Structure-Activity Relationship

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010