phenyl-n-tert-butylnitrone has been researched along with caffeic acid in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (33.33) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 2 (66.67) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Alcázar, A; Ayuso, I; Chioua, M; González, MP; Hadjipavlou-Litina, D; Marco-Contelles, J; Monjas, L; Oset-Gasque, MJ; Rodríguez-Franco, MI; Samadi, A; Soriano, E; Sucunza, D | 1 |
Asteian, A; Cassien, M; Culcasi, M; Kandouli, C; Mercier, A; Petrocchi, C; Pietri, S; Ricquebourg, E; Robin, M; Rockenbauer, A; Thétiot-Laurent, S | 1 |
Ali, S; Molinari, LM; Wells, PG; Wong, ST; Zubovits, JT | 1 |
3 other study(ies) available for phenyl-n-tert-butylnitrone and caffeic acid
Article | Year |
---|---|
Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Blood-Brain Barrier; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Edema; Female; Free Radical Scavengers; Hydroxyl Radical; Lipid Peroxidation; Lipoxygenase Inhibitors; Male; Necrosis; Neurons; Neuroprotective Agents; Nitric Oxide Donors; Nitrogen Oxides; Oximes; Permeability; Quinolines; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Stereoisomerism; Stroke; Structure-Activity Relationship; Superoxides | 2012 |
On the vasoprotective mechanisms underlying novel β-phosphorylated nitrones: Focus on free radical characterization, scavenging and NO-donation in a biological model of oxidative stress.
Topics: Animals; Aorta; Biphenyl Compounds; Cattle; Cell Line, Tumor; Free Radical Scavengers; Free Radicals; Hydrophobic and Hydrophilic Interactions; Nitric Oxide; Nitrogen Oxides; Oxidative Stress; Phosphorylation; Picrates; Protein Carbonylation; Rats; Spin Trapping; Superoxides; Vasodilation | 2016 |
Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase.
Topics: Abnormalities, Drug-Induced; Animals; Aspirin; Biotransformation; Caffeic Acids; Cinnamates; Cyclic N-Oxides; Cytochrome P-450 Enzyme System; Embryo, Mammalian; Female; Fetal Resorption; Free Radicals; Mice; Nitrogen Oxides; Phenytoin; Pregnancy; Prostaglandin-Endoperoxide Synthases | 1989 |