phenoxan has been researched along with aureothin* in 1 studies
1 other study(ies) available for phenoxan and aureothin
Article | Year |
---|---|
Synthesis of 5-hydroxy-2-(beta-D-ribofuranosyl)pyran-4-one from a pyranulose glycoside.
The synthesis of 5-hydroxy-2-(beta-D-ribofuranosyl)pyran-4-one (9) is described. Treatment of pyranulose glycoside with bromine in carbon tetrachloride afforded brompyranulose glycoside in 90% yield. The reaction of (6S)- and (6R)-4-bromo-6-hydroxy-6-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-6H- pyran-3-one (2) in acidic media was examined with the following results: the reaction of 2 with trifluoroacetic acid (TFA) in dioxane afforded a mixture of 5-hydroxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (3) and its furan derivative 5-hydroxy-2-{5-(benzoyloxy)methyl]furan-2-yl}pyran-4-one (4), but the use of hydrochloric acid formed the bromofurfural, 3-bromo-5-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)-2-furancarboxyal dehyde only. Acetylation of a mixture (3 and 4) with acetic anhydride facilitated product separation to give the corresponding acetates 5-acetoxy-2-(2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)pyran-4-one (5) and 5-acetoxy-2-{5-[(benzoyloxy)methyl]furan-2-yl}pyran-4-one (6). Treatment of 5 with hydrazine afforded 3-hydroxymethyl-6-(beta-D-ribofuranosyl)-1H-pyridazin-4-one in 43% yield. Debenzoylation of 5 with aq ammonia gave 9 in 50% yield. Topics: Anti-Bacterial Agents; Chromones; Glycosides; Indicators and Reagents; Magnetic Resonance Spectroscopy; Molecular Structure; Oxazoles; Pyrones; Ribose; Spectrometry, Mass, Fast Atom Bombardment | 1999 |