phenobarbital-sodium and isospaglumic-acid

phenobarbital-sodium has been researched along with isospaglumic-acid* in 25 studies

Reviews

1 review(s) available for phenobarbital-sodium and isospaglumic-acid

ArticleYear
Glutamate carboxypeptidase II (NAALADase) inhibition as a novel therapeutic strategy.
    Advances in experimental medicine and biology, 2006, Volume: 576

    GCP II inhibition decreases extracellular excitotoxic glutamate and increases extracellular NAAG, both of which provide neuroprotection. We have demonstrated with our potent and selective GCP II inhibitors efficacy in models of stroke, ALS and neuropathic pain. GCP II inhibition may have significant potential benefits over existing glutamate-based neuroprotection strategies. The upstream mechanism seems selective for excitotoxic induced glutamate release, as GCP II inhibitors in normal animals induced no change in basal glutamate. This suggestion has recently been corroborated by Lieberman and coworkers24 who found that both NAAG release and increase in GCP II activity appear to be induced by electrical stimulation in crayfish nerve fibers and that subsequent NAAG hydrolysis to glutamate contributes, at least in part, to subsequent NMDA receptor activation. Interestingly, even at relatively high doses of compounds, GCP II inhibition did not appear to be associated with learning/memory deficits in animals. Additionally, quantitative neurophysiological testing data and visual analog scales for 'psychedelic effects' in Phase I single dose and repeat dose studies showed GCP II inhibition to be safe and well tolerated by both healthy volunteers and diabetic patients. GCP II inhibition may represent a novel glutamate regulating strategy devoid of the side effects that have hampered the development of postsynaptic glutamate receptor antagonists.

    Topics: Analgesics; Animals; Aspartic Acid; Dipeptides; Glutamate Carboxypeptidase II; Glutamic Acid; Humans; Molecular Structure; Neurons; Neuroprotective Agents; Organophosphorus Compounds

2006

Other Studies

24 other study(ies) available for phenobarbital-sodium and isospaglumic-acid

ArticleYear
Glutamate carboxypeptidase II (GCPII) inhibitor 2-PMPA reduces rewarding effects of the synthetic cathinone MDPV in rats: a role for N-acetylaspartylglutamate (NAAG).
    Psychopharmacology, 2017, Volume: 234, Issue:11

    Metabotropic glutamate 2 and 3 (mGluR2/3) receptors are implicated in drug addiction as they limit excessive glutamate release during relapse. N-acetylaspartylglutamate (NAAG) is an endogenous mGluR2/3 agonist that is inactivated by the glutamate carboxypeptidase II (GCPII) enzyme. GCPII inhibitors, and NAAG itself, attenuate cocaine-seeking behaviors. However, their effects on the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) have not been examined.. We determined whether withdrawal following repeated MDPV administration alters GCPII expression in corticolimbic regions. We also examined whether a GCPII inhibitor (2-(phosphonomethyl)-pentanedioic acid (2-PMPA)), and NAAG, reduce the rewarding and locomotor-stimulant effects of MDPV in rats.. GCPII was assessed following repeated MDPV exposure (7 days). The effects of 2-PMPA and NAAG on acute MDPV-induced hyperactivity were determined using a locomotor test. We also examined the inhibitory effects of 2-PMPA and NAAG on MDPV-induced place preference, and whether the mGluR2/3 antagonist LY341495 could prevent these effects.. MDPV withdrawal reduced GCPII expression in the prefrontal cortex. Systemic injection of 2-PMPA (100 mg/kg) did not affect the hyperactivity produced by MDPV (0.5-3 mg/kg). However, nasal administration of NAAG did reduce MDPV-induced ambulation, but only at the highest dose (500 μg/10 μl). We also showed that 2-PMPA (10-30 mg/kg) and NAAG (10-500 μg/10 μl) dose-dependently attenuated MDPV place preference, and that the effect of NAAG was blocked by LY341495 (3 mg/kg).. These findings demonstrate that MDPV withdrawal produces dysregulation in the endogenous NAAG-GCPII signaling pathway in corticolimbic circuitry. Systemic administration of the GCPII inhibitor 2-PMPA, or NAAG, attenuates MDPV reward.

    Topics: Alkaloids; Amino Acids; Animals; Benzodioxoles; Conditioning, Psychological; Dipeptides; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamate Carboxypeptidase II; Male; Organophosphorus Compounds; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Reward; Synthetic Cathinone; Xanthenes

2017
Dose-dependent inhibition of GCPII to prevent and treat cognitive impairment in the EAE model of multiple sclerosis.
    Brain research, 2016, Mar-15, Volume: 1635

    There are no treatments for cognitive impairment in multiple sclerosis (MS). Novel treatments can be evaluated in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS that displays both physical and cognitive impairments. Inhibition of the neuropeptidase glutamate carboxypeptidase II (GCPII) has previously been shown to ameliorate cognitive impairment in EAE, but dosing has not yet been optimized and only a prevention treatment paradigm has been explored. In the study described herein, the dose response of the GCPII inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) was evaluated for preventing cognitive impairment in EAE mice. Mice were immunized and received daily injections of vehicle or 2-PMPA (10, 30, 100, or 300 mg/kg) from the time of immunization (i.e. day 0). Although no doses of the drug altered physical disease severity, the 100mg/kg dose was most efficacious at preventing cognitive impairments in Barnes maze performance. Dose-related increases in brain NAAG levels were observed in post-mortem analysis, confirming target engagement. Using the 100mg/kg dose, we subsequently evaluated 2-PMPA׳s ability to treat EAE-induced symptoms by commencing treatment after the onset of physical signs of EAE (i.e. day 14). Mice were immunized for EAE and received daily injections of vehicle or 100mg/kg 2-PMPA starting two weeks post-immunization. Significant improvements in both cognitive performance and increases in brain NAAG levels were observed. GCPII inhibition is a promising treatment for cognitive impairment in MS, and doses providing equivalent exposures to 100mg/kg 2-PMPA in mice should be evaluated in clinical studies for the prevention and/or treatment of MS-related cognitive impairment.

    Topics: Animals; Aspartic Acid; Cognition Disorders; Dipeptides; Dose-Response Relationship, Drug; Encephalomyelitis, Autoimmune, Experimental; Female; Glutamate Carboxypeptidase II; Hippocampus; Maze Learning; Mice; Mice, Inbred C57BL; Multiple Sclerosis; Organophosphorus Compounds; Severity of Illness Index

2016
N-acetyl-aspartyl-glutamate and inhibition of glutamate carboxypeptidases protects against soman-induced neuropathology.
    Neurotoxicology, 2015, Volume: 48

    N-acetyl-aspartyl-glutamate (NAAG) is the most abundant neuropeptide in the mammalian brain. In a variety of animal models of brain injury, the administration of NAAG-related compounds, or inhibitors of glutamate carboxypeptidases (GCPs; the enzymes that hydrolyze NAAG), were shown to be neuroprotective. This study determined the impact of the administration of three NAAG-related compounds, NAAG, β-NAAG (a NAAG homologue resistant to degradation), and 2-phosphonomethyl pentanedioic acid (2-PMPA; an inhibitor of GCP enzymes), on the neuropathology that develops following exposure to the nerve agent, soman. When given 1 min after soman exposure, NAAG-related drug treatments did not alter the survival rate or body weight loss seen 24 h after rats were exposed to soman. Likewise, brain levels of both NAAG and its metabolite, N-acetyl-aspartate (NAA), were substantially decreased 24 h after soman, and in particularly vulnerable brain regions the drug treatments were unable to attenuate the reduction in NAA and NAAG levels. Histochemical study indicated there was a dramatic increase in Fluoro-Jade C (FJC) staining, indicative of neuron cell death, 24 h after soman exposure. However, in the amygdala and in the entorhinal and piriform limbic cortex, which sustained severe neuropathology following soman intoxication, single or combined injections of NAAG compounds and 2-PMPA significantly reduced the number of FJC-positive cells, and effect size estimates suggest that in some brain regions the treatments were effective. The findings suggest that NAAG neurotransmission in the central nervous system is significantly altered by soman exposure, and that the administration of NAAG-related compounds and 2-PMPA reduces neuron cell death in brain regions that sustain severe damage.

    Topics: Animals; Brain; Carboxypeptidases; Cell Death; Chemical Warfare Agents; Chromatography, High Pressure Liquid; Dipeptides; Disease Models, Animal; Enzyme Inhibitors; Male; Neurons; Neuroprotective Agents; Organophosphate Poisoning; Organophosphorus Compounds; Rats, Sprague-Dawley; Signal Transduction; Soman; Time Factors

2015
Glutamate carboxypeptidase II does not process amyloid-β peptide.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2013, Volume: 27, Issue:7

    The accumulation of amyloid-β (Aβ) peptide is thought to be a major causative mechanism of Alzheimer's disease. Aβ accumulation could be caused by dysregulated processing of amyloid precursor protein, yielding excessive amounts of Aβ, and/or by inefficient proteolytic degradation of the peptide itself. Several proteases have been described as Aβ degradation enzymes, most notably metalloendopeptidases, aspartic endopeptidases, and some exopeptidases. Recently a report suggested that another metallopeptidase, glutamate carboxypeptidase II (GCPII), can also cleave Aβ. GCPII is a zinc exopeptidase that cleaves glutamate from N-acetyl-L-aspartyl-L-glutamate in the central nervous system and from pteroylpoly-γ-glutamate in the jejunum. GCPII has been proposed as a promising therapeutic target for disorders caused by glutamate neurotoxicity. However, an Aβ-degrading activity of GCPII would compromise potential pharmaceutical use of GCPII inhibitors, because the enzyme inhibition might lead to increased Aβ levels and consequently to Alzheimer's disease. Therefore, we analyzed the reported Aβ-degrading activity of GCPII using highly purified recombinant enzyme and synthetic Aβ. We did not detect any Aβ degradation activity of GCPII or its homologue even under prolonged incubation at a high enzyme to substrate ratio. These results are in good agreement with the current detailed structural understanding of the substrate specificity and enzyme-ligand interactions of GCPII.

    Topics: Amyloid beta-Peptides; Antigens, Surface; Biocatalysis; Catalytic Domain; Chromatography, High Pressure Liquid; Dipeptides; Glutamate Carboxypeptidase II; Humans; Hydrolysis; Mass Spectrometry; Molecular Structure; Neprilysin; Organophosphorus Compounds; Peptide Fragments; Proteolysis; Recombinant Proteins; Substrate Specificity; Tritium

2013
S1 pocket of glutamate carboxypeptidase II: a new binding site for amyloid-β degradation.
    Biochemical and biophysical research communications, 2013, Sep-06, Volume: 438, Issue:4

    We recently reported that glutamate carboxypeptidase II (GCPII) has a new physiological function degrading amyloid-β (Aβ), distinct from its own hydrolysis activity in N-acetyl-L-aspartyl-L-glutamate (NAAG); however, its underlying mechanism remains undiscovered. Using site-directed mutagenesis and S1 pocket-specific chemical inhibitor (compound 2), which was developed for the present study based on in sillico computational modeling, we discovered that the Aβ degradation occurs through S1 pocket but not through S1' pocket responsible for NAAG hydrolysis. Treatment with compound 2 prevented GCPII from Aβ degradation without any impairment in NAAG hydrolysis. Likewise, 2-PMPA (specific GCPII inhibitor developed targeting S1' pocket) completely blocked the NAAG hydrolysis without any effect on Aβ degradation. Pre-incubation with NAAG and Aβ did not affect Aβ degradation and NAAG hydrolysis, respectively. These data suggest that GCPII has two distinctive binding sites for two different substrates and that Aβ degradation occurs through binding to S1 pocket of GCPII.

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Binding Sites; Cell Line, Tumor; Dipeptides; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Glutamic Acid; Humans; Mice; Mice, Transgenic; Molecular Docking Simulation; Mutagenesis, Site-Directed; Organophosphorus Compounds; Proteolysis

2013
Inhibition of glutamate carboxypeptidase II (GCPII) activity as a treatment for cognitive impairment in multiple sclerosis.
    Proceedings of the National Academy of Sciences of the United States of America, 2012, Dec-04, Volume: 109, Issue:49

    Half of all patients with multiple sclerosis (MS) experience cognitive impairment, for which there is no pharmacological treatment. Using magnetic resonance spectroscopy (MRS), we examined metabolic changes in the hippocampi of MS patients, compared the findings to performance on a neurocognitive test battery, and found that N-acetylaspartylglutamate (NAAG) concentration correlated with cognitive functioning. Specifically, MS patients with cognitive impairment had low hippocampal NAAG levels, whereas those with normal cognition demonstrated higher levels. We then evaluated glutamate carboxypeptidase II (GCPII) inhibitors, known to increase brain NAAG levels, on cognition in the experimental autoimmune encephalomyelitis (EAE) model of MS. Whereas GCPII inhibitor administration did not affect physical disabilities, it increased brain NAAG levels and dramatically improved learning and memory test performance compared with vehicle-treated EAE mice. These data suggest that NAAG is a unique biomarker for cognitive function in MS and that inhibition of GCPII might be a unique therapeutic strategy for recovery of cognitive function.

    Topics: Adult; Analysis of Variance; Animals; Cognitive Dysfunction; Dipeptides; Encephalomyelitis, Autoimmune, Experimental; Female; Flow Cytometry; Glutamate Carboxypeptidase II; Hippocampus; Humans; Magnetic Resonance Spectroscopy; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Multiple Sclerosis; Neuropsychological Tests; Organophosphorus Compounds

2012
Inhibition of NAALADase by 2-PMPA attenuates cocaine-induced relapse in rats: a NAAG-mGluR2/3-mediated mechanism.
    Journal of neurochemistry, 2010, Volume: 112, Issue:2

    Pharmacological activation of group II metabotropic glutamate receptors (mGluR2/3) inhibits cocaine self-administration and reinstatement of drug-seeking behavior, suggesting a possible use of mGluR2/3 agonists in the treatment of cocaine dependence. In this study, we investigated whether elevation of the endogenous mGluR2/3 ligand N-acetyl-aspartatylglutamate (NAAG) levels by the N-acetylated-alpha-linked-acidic dipeptidase inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) attenuates cocaine self-administration and cocaine-induced reinstatement of drug seeking. N-acetylated-alpha-linked-acidic dipeptidase is a NAAG degradation enzyme that hydrolyzes NAAG to N-acetylaspartate and glutamate. Systemic administration of 2-PMPA (10-100 mg/kg, i.p.) inhibited intravenous self-administration maintained by low unit doses of cocaine and cocaine (but not sucrose)-induced reinstatement of drug-seeking behavior. Microinjections of 2-PMPA (3-5 microg/side) or NAAG (3-5 microg/side) into the nucleus accumbens (NAc), but not into the dorsal striatum, also inhibited cocaine-induced reinstatement, an effect that was blocked by intra-NAc injection of LY341495, a selective mGluR2/3 antagonist. In vivo microdialysis demonstrated that 2-PMPA (10-100 mg/kg, i.p.) produced a dose-dependent reduction in both extracellular dopamine (DA) and glutamate, an effect that was also blocked by LY341495. Finally, pre-treatment with 2-PMPA partially attenuated cocaine-enhanced extracellular NAc DA, while completely blocking cocaine-enhanced extracellular NAc glutamate in rats during reinstatement testing. Intra-NAc perfusion of LY341495 blocked 2-PMPA-induced reductions in cocaine-enhanced extracellular NAc glutamate, but not DA. These findings suggest that 2-PMPA is effective in attenuating cocaine-induced reinstatement of drug-seeking behavior, likely by attenuating cocaine-induced increases in NAc DA and glutamate via pre-synaptic mGluR2/3s.

    Topics: Amino Acids; Analysis of Variance; Animals; Behavior, Animal; Bridged Bicyclo Compounds, Heterocyclic; Cocaine; Cocaine-Related Disorders; Conditioning, Operant; Corpus Striatum; Dipeptides; Dopamine; Dose-Response Relationship, Drug; Extinction, Psychological; Glutamate Carboxypeptidase II; Glutamic Acid; Male; Microdialysis; Microinjections; Neuroprotective Agents; Nucleus Accumbens; Organophosphorus Compounds; Rats; Rats, Long-Evans; Receptors, Metabotropic Glutamate; Reinforcement Schedule; Self Administration; Sucrose; Sweetening Agents

2010
GCP II inhibition rescues neurons from gp120IIIB-induced neurotoxicity.
    Journal of neurovirology, 2009, Volume: 15, Issue:5-6

    Excessive glutamate neurotransmission has been implicated in neuronal injury in many disorders of the central nervous system (CNS), including human immunodeficiency virus (HIV)-associated dementia. Gp120IIIB is a strain of a HIV glycoprotein with specificity for the CXCR4 receptor that induces neuronal apoptosis in in vitro models of acquired immunodeficiency syndrome (AIDS)-induced neurodegeneration. Since the catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) by glutamate carboxypeptidase (GCP) II increases cellular glutamate, an event associated with excitotoxicity, we hypothesized that inhibition of GCP II may prevent gp120IIIB-induced cell death. Furthermore, through GCP II inhibition, increased NAAG may be neuroprotective via its agonist effects at the mGlu(3) receptor. To ascertain the therapeutic potential of GCP II inhibitors, embryonic day 17 hippocampal cultures were exposed to gp120IIIB in the presence of a potent and highly selective GCP II inhibitor, 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). 2-PMPA was found to abrogate gp120IIIB-induced toxicity in a dose-dependent manner. Additionally, 2-PMPA was neuroprotective when applied up to 2 h after the application of gp120IIIB. The abrogation of apoptosis by 2-PMPA was reversed with administration of mGlu(3) receptor antagonists and with antibodies to transforming growth factor (TGF)-beta. Further, consistent with the localization of GCP II, 2-PMPA failed to provide neuroprotection in the absence of glia. GCP II activity and its inhibition by 2-PMPA were confirmed in the hippocampal cultures using radiolabeled NAAG and high-performance liquid chromatography (HPLC) analysis. Taken together, these data suggest that GCP II is involved in mediating gp120-induced apoptosis in hippocampal neurons and GCP II inhibitors may have potential in the treatment of neuronal injury related to AIDS.

    Topics: AIDS Dementia Complex; Animals; Apoptosis; Cells, Cultured; Dipeptides; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Hippocampus; HIV Envelope Protein gp120; Neuroglia; Neurons; Neuroprotective Agents; Organophosphorus Compounds; Rats; Receptors, Metabotropic Glutamate; Transforming Growth Factor beta

2009
Intracerebroventricular administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in inflammatory pain.
    Molecular pain, 2008, Aug-01, Volume: 4

    The peptide neurotransmitter N-Acetylaspartylglutamate (NAAG) is the third most prevalent transmitter in the mammalian central nervous system. Local, intrathecal and systemic administration of inhibitors of enzymes that inactivate NAAG decrease responses to inflammatory pain in rat models. Consistent with NAAG's activation of group II metabotropic glutamate receptors, this analgesia is blocked by a group II antagonist.. This research aimed at determining if analgesia obtained following systemic administration of NAAG peptidase inhibitors is due to NAAG activation of group II mGluRs in brain circuits that mediate perception of inflammatory pain. NAAG and NAAG peptidase inhibitors, ZJ43 and 2-PMPA, were microinjected into a lateral ventricle prior to injection of formalin in the rat footpad. Each treatment reduced the early and late phases of the formalin-induced inflammatory pain response in a dose-dependent manner. The group II mGluR antagonist reversed these analgesic effects consistent with the conclusion that analgesia was mediated by increasing NAAG levels and the peptide's activation of group II receptors.. These data contribute to proof of the concept that NAAG peptidase inhibition is a novel therapeutic approach to inflammatory pain and that these inhibitors achieve analgesia by elevating synaptic levels of NAAG within pain processing circuits in brain.

    Topics: Analgesics; Animals; Dipeptides; Glutamate Carboxypeptidase II; Inflammation Mediators; Injections, Intraventricular; Male; Organophosphorus Compounds; Pain; Protease Inhibitors; Rats; Rats, Sprague-Dawley; Urea

2008
Effects of selective inhibition of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) on mice in learning and memory tasks.
    European journal of pharmacology, 2008, Jan-28, Volume: 579, Issue:1-3

    The purpose of the present study was to examine the effects of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a selective inhibitor of N-acetylated-alpha-linked-acidic dipeptidase (NAALADase, glutamate carboxypeptidase II), an enzyme catalyzing the cleavage of glutamate from the neuropeptide N-acetyl-aspartyl-glutamate (NAAG), on memory processes in mice. Long-term memory was evaluated in step-through passive avoidance task while alternation behavior, as a measure involving spatial working memory, was assessed in Y-maze task. Additionally, horizontal activity was evaluated by means of electronically monitored locomotor activity system. The mice were treated with either 2-PMPA (50, 100 and 150 mg/kg i.p.) or N-methyl-d-aspartate (NMDA) receptor antagonist, (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10-imine hydrogen maleate (MK-801) at doses of: 0.05, 0.1, 0.15 and 0.2 mg/kg i.p., as a comparator. In the passive avoidance task, the drugs were administered once before or immediately after training, and before retention test. 2-PMPA at the doses used did not affect retention of passive avoidance; however, it increased the latency to enter the dark box during the training day. In the Y-maze task, 2-PMPA (150 mg/kg i.p.) impaired spontaneous alternation and reduced locomotion while the lower dose of 100 mg/kg was ineffective. In the locomotor activity test, 2-PMPA (100 and 150 mg/kg i.p.) did not significantly affect horizontal activity. MK-801 (0.2 mg/kg i.p.) injected before training reduced retention in the passive avoidance task. In the Y-maze task, MK-801 (0.1 mg/kg i.p.) impaired alternation behavior and considerably increased locomotion in the Y-maze and locomotor activity test. These results indicate that NAALADase inhibition may impair alternation behavior.

    Topics: Animals; Avoidance Learning; Dipeptides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Glutamate Carboxypeptidase II; Maze Learning; Memory; Mice; Motor Activity; Organophosphorus Compounds

2008
Endogenous N-acetylaspartylglutamate reduced NMDA receptor-dependent current neurotransmission in the CA1 area of the hippocampus.
    Journal of neurochemistry, 2007, Volume: 100, Issue:2

    N-Acetylaspartylglutamate (NAAG) is a neuropeptide found in high concentrations in the brain. Using whole-cell recordings of CA1 pyramidal neurons in acute hippocampal slices, we found that either (i) the application of exogenous NAAG or (ii) an increase of endogenous extracellular NAAG, caused by the inhibition of its catabolic enzyme glutamate carboxypeptidase II (GCP II), resulted in a significant reduction in the amplitude of the isolated NMDA receptor (NMDAR) component of the evoked excitatory postsynaptic current (EPSC). Conversely, reduction of endogenous extracellular NAAG caused by either (i) perfusion with a soluble form of pure human GCP II or (ii) affinity purified antibodies against NAAG, enhanced the amplitude of the isolated NMDAR current. Bath application of GCP II inhibitor induced a progressive loss of spontaneous NMDAR miniatures. Furthermore, NAAG blocked the induction of long-term potentiation at Schaffer collateral axons-CA1 pyramidal neuron synapses. All together, these results suggest that NAAG acts as an endogenous modulator of NMDARs in the CA1 area of the hippocampus.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Antibodies; Chemokine CXCL6; Chemokines, CXC; Dipeptides; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Hippocampus; Humans; In Vitro Techniques; Long-Term Potentiation; Membrane Potentials; Organophosphorus Compounds; Patch-Clamp Techniques; Pyramidal Cells; Rats; Rats, Long-Evans; Receptors, N-Methyl-D-Aspartate

2007
Effects of NAAG peptidase inhibitor 2-PMPA in model chronic pain - relation to brain concentration.
    Neuropharmacology, 2006, Volume: 51, Issue:7-8

    N-acetylated-alpha-linked-acidic peptidase (NAAG peptidase) converts N-acetyl-aspartyl-glutamate (NAAG, mGluR3 agonist) into N-acetyl-aspartate and glutamate. The NAAG peptidase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) had neuroprotective activity in an animal model of stroke and anti-allodynic activity in CCI model despite its uncertain ability to penetrate the blood-brain barrier. The NAAG concentration in brain ECF under basal conditions and its alteration in relation to the brain ECF concentration of 2-PMPA is unclear. We therefore assessed those brain concentrations after i.p. administration of 2-PMPA, using in vivo microdialysis combined with LC/MS/MS analysis. Administration of 2-PMPA (50mg/kg) produced a mean peak concentration of 2-PMPA of 29.66+/-8.1microM. This concentration is about 100,000 fold more than is needed for inhibition of NAAG peptidase, and indicates very good penetration to the brain. Application of 2-PMPA was followed by a linear increase of NAAG-concentration reaching a maximum of 2.89+/-0.42microM at the end of microdialysis. However, during the time the anti-allodynic effects of 2-PMPA were observed, the NAAG concentration in the ECF did not reach levels which are likely to have an impact on any known target. It appears therefore that the observed behavioural effects of 2-PMPA may not be mediated by NAAG nor, in turn, by mGluR3 receptors.

    Topics: Analgesics, Non-Narcotic; Animals; Biotransformation; Blood-Brain Barrier; Brain Chemistry; Chronic Disease; Dipeptides; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Extracellular Fluid; Glutamate Carboxypeptidase II; Injections, Intraperitoneal; Ligation; Male; Microdialysis; Models, Animal; Neuralgia; Neuroprotective Agents; Organophosphorus Compounds; Pain Threshold; Pyridazines; Quinolines; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Metabotropic Glutamate; Sciatic Nerve

2006
Protection against glucose-induced neuronal death by NAAG and GCP II inhibition is regulated by mGluR3.
    Journal of neurochemistry, 2004, Volume: 89, Issue:1

    Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.

    Topics: Animals; Apoptosis; Cells, Cultured; Coculture Techniques; Diabetic Neuropathies; Dipeptides; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Ganglia, Spinal; Glucose; Glutamate Carboxypeptidase II; Neurites; Neurons; Neuroprotective Agents; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Schwann Cells

2004
Effects of GCP-II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological study in the rat.
    Neuropeptides, 2003, Volume: 37, Issue:5

    N-Acetylaspartylglutamate (NAAG) is a peptide neurotransmitter present in the brain and spinal cord. It is hydrolysed by glutamate carboxypeptidase II (GCPII); thus, the GCP-II inhibitor 2-[phosphono-methyl]-pentanedioic acid (2-PMPA) protects endogenous NAAG from degradation, allowing its effects to be studied in vivo. We recorded the effect of spinal 2-PMPA (50-1000 microg) on the electrical-evoked activity of dorsal horn neurones in normal and carrageenan-inflamed animals, and in the spinal nerve ligation (SNL) model of neuropathy and sham-operated animals. In normal animals, 1000 microg 2-PMPA selectively inhibited noxious-evoked activity (input, post-discharge and C- and Adelta-fibre-evoked responses), and not low threshold Abeta-fibre-evoked responses. After carrageenan inflammation, the lower dose of 100 microg 2-PMPA inhibited input, post-discharge, C- and Adelta-fibre-evoked responses by a significantly greater amount than the same dose in normal animals. 2-PMPA inhibited neuronal responses less consistently in sham-operated and SNL animals, and effects were not significantly different from those seen in normal animals. NAAG is an agonist at the inhibitory metabotropic glutamate receptor mGluR3, and 2-PMPA may inhibit nociceptive transmission in normal animals by elevating synaptic NAAG levels, allowing it to activate mGluR3 and thus reducing transmitter release from afferent nerve terminals. mGluR3 expression in the superficial dorsal horn is upregulated after peripheral inflammation, perhaps explaining the greater inhibition of neuronal responses we observed after carrageenan inflammation. These results support an important role of endogenous NAAG in the spinal processing of noxious information.

    Topics: Animals; Carrageenan; Dipeptides; Disease Models, Animal; Electric Stimulation; Glutamate Carboxypeptidase II; Ligation; Male; Nerve Fibers, Myelinated; Nerve Fibers, Unmyelinated; Neuralgia; Neuritis; Nociceptors; Organophosphorus Compounds; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Spinal Nerves

2003
Molecular modeling of the interactions of glutamate carboxypeptidase II with its potent NAAG-based inhibitors.
    Journal of medicinal chemistry, 2002, Sep-12, Volume: 45, Issue:19

    Glutamate carboxypeptidase II (GCPII, NAALADase, or NAAG peptidase) is a catalytic zinc metallopeptidase. Its extracellular domain hydrolyzes the abundant neuropeptide, N-acetyl-L-aspartyl-L-glutamate (NAAG), to produce N-acetylaspartate and glutamate following the synaptic release of this transmitter. Thus, GCPII influences the extracellular concentrations of both glutamate and NAAG. NAAG activates group II metabotropic glutamate receptors, and activation of this receptor has been found to protect against anoxia-induced excitotoxic nerve cell death. In contrast, high levels of glutamate can be neurotoxic. Thus, GCPII is a potential therapeutic target for the reduction of excitotoxic levels of glutamate and enhancement of extracellular NAAG. To explore the structural basis of the interaction between GCPII and its inhibitors, we modeled the three-dimensional structure of the GCPII extracellular domain using a homology modeling approach. On the basis of the GCPII model, the structures of GCPII in complex with its potent inhibitors 2-(phosphonomethyl)pentanedioic acid (PMPA) and 4,4'-phosphinicobis(butane-1,3-dicarboxylic acid) (PBDA) were built by a computational docking method. The model of GCPII mainly consists of two alpha/beta/alpha sandwiches, between which two zinc ions are quadrivalently coordinated by the His379-Asp389-Asp455-H(2)O and the Asp389-Glu427-His555-H(2)O clusters, respectively. The ligand binding pocket is situated between these two sandwiches and is comprised of two subpockets: one is a surface-exposed highly positively charged subpocket; the other is a buried hydrophobic subpocket. The positively charged subpocket can accommodate the pharmacophore groups of inhibitor molecules (PMPA and PBDA) through the coordination of Zn(2+) with their phosphorus functionality and hydrogen-bonding interactions with Arg536, Arg538, and Ser456 (or Asn521), while the hydrophobic subpocket is engaged in hydrophobic and hydrogen-bonding interactions with the nonpharmacophore groups of PBDA. The predicted binding mode is consistent with the experimental data obtained from site-directed mutagenesis. On the basis of the predicted interaction mode, our structure-based design has led to a series of highly potent GCPII inhibitors.

    Topics: Amino Acid Sequence; Carboxypeptidases; Dipeptides; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Glutarates; Hydrogen Bonding; Ligands; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Organophosphorus Compounds; Phosphinic Acids; Sequence Homology, Amino Acid; Static Electricity; Structure-Activity Relationship

2002
Kinetics and inhibition of glutamate carboxypeptidase II using a microplate assay.
    Analytical biochemistry, 2002, Nov-01, Volume: 310, Issue:1

    Glutamate carboxypeptidase II (GCPII or prostate-specific membrane antigen or NAALADase) is an enzyme that catalyzes the hydrolysis of the neuropeptide N-acetylaspartylglutamate (NAAG) to N-acetylaspartate (NAA) and glutamate (G). Inhibitors of GCPII provide neuroprotection in a variety of animal models of central nervous system disorders. Neuroprotection is probably the result of increased NAAG concentrations and decreased levels of excess toxic glutamate. Consequently, GCPII inhibitors could be useful therapeutic agents where increased glutamate levels are the result of increased GCPII activity. Current GCPII in vitro activity assays are cumbersome or have limited sensitivity. In this report we describe a microplate assay to study GCPII inhibition that is most sensitive, efficient, and generates little waste. GCPII turnover number (k(cat)) was 4s(-1) and the binding constant (K(m)) for NAAG and GCPII was 130nM. The apparent association rate constant for GCPII and NAAG (k(cat)/K(m)) was 3 x 10(7)M(-1)s(-1). Inhibition studies with the GCPII inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) demonstrated competitive inhibition with a K(i)=0.2nM.

    Topics: Binding, Competitive; Carboxypeptidases; Catalysis; Chromatography, Ion Exchange; Dipeptides; Hydrolysis; Kinetics; Microchemistry; Organophosphorus Compounds; Scintillation Counting; Tritium

2002
Neuroprotective effects of N-acetylaspartylglutamate in a neonatal rat model of hypoxia-ischemia.
    European journal of pharmacology, 2002, Feb-22, Volume: 437, Issue:3

    Neuroprotective effects of N-acetylaspartylglutamate (NAAG), the precursor of glutamate and a selective agonist at the Group II metabotropic glutamate (mGlu) receptor, against hypoxic-ischemic brain injury were examined in a neonatal rat model of cerebral hypoxia-ischemia. The neonatal hypoxia-ischemia procedure (unilateral carotid artery ligation followed by exposure to an 8% oxygen hypoxic condition for 1.5 h) was performed in 7-day-old rat pups. Following unilateral carotid artery ligation, NAAG (0.5 to 20 mg/kg, i.p.) was administered before or after the hypoxic exposure. Brain injury was examined 1-week later by weight reduction in the ipsilateral brain and by neuron density in the hippocampal CA1 area. In the saline-treated rat, neonatal hypoxia-ischemia resulted in severe brain injury as indicated by a 24% reduction in the ipsilateral brain weight. Low doses of NAAG (2-10 mg/kg, but not 0.5 mg/kg), administered before or even if 1 h after the hypoxic exposure, greatly reduced hypoxia-ischemia-induced brain injury (3.8-14.2% reduction in the ipsilateral brain weight). A high dose of NAAG (20 mg/kg) was ineffective. While L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) and trans-[1S,3R]-1-Amino-cyclopentane-1, 3-dicarboxylic acid (t-ACPD) were unable to provide protection against hypoxic-ischemic brain injury, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), an inhibitor of N-acetylated alpha-linked acidic dipeptidase (NAALADase), which hydrolyzes endogenous NAAG into N-acetyl-aspartate and glutamate, significantly reduced neonatal hypoxia-ischemia-induced brain injury. (alphaS)-alpha-Amino-alpha-[(1S, 2S)-2-carboxycyclopropyl]-9H-xanthine-9-propanoic acid (LY341495), a selective antagonist at the mGlu2/3 receptor, prevented the neuroprotective effect of NAAG. Neuron density data measured in the hippocampal CA1 area confirmed that ipsilateral brain weight reduction was a valid measure for hypoxic-ischemic brain injury. Neonatal hypoxia-ischemia stimulated an elevation of cyclic AMP (cAMP) concentration in the saline-treated rat brain. NAAG, L-AP4 and t-ACPD all significantly decreased hypoxia-ischemia-induced elevation of cAMP. LY341495 blocked the effect of NAAG, but not of L-AP4 or t-ACPD, on hypoxia-ischemia-stimulated cAMP elevation. The overall results suggest that the neuroprotective effect of NAAG is largely associated with activation of mGlu2/3 receptor.

    Topics: Amino Acids; Animals; Animals, Newborn; Brain; Carboxypeptidases; Cyclic AMP; Cycloleucine; Dipeptides; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutamate Carboxypeptidase II; Hippocampus; Hypoxia-Ischemia, Brain; Neurons; Neuroprotective Agents; Organophosphorus Compounds; Propionates; Rats; Rats, Sprague-Dawley; Xanthenes

2002
Spinal N-acetyl-alpha-linked acidic dipeptidase (NAALADase) inhibition attenuates mechanical allodynia induced by paw carrageenan injection in the rat.
    Brain research, 2001, Aug-03, Volume: 909, Issue:1-2

    N-Acetylated-alpha-linked acidic dipeptidase (NAALADase) hydrolyzes N-acetyl-aspartyl-glutamate (NAAG) to liberate N-acetyl-aspartate and glutamate. NAAG is a putative neurotransmitter and acts as a mixed agonist/antagonist on N-methyl-D-aspartate (NMDA) receptors and acts as an agonist on the metabotropic glutamate receptor 3 (mGluR3). In the present study, we examined the role of spinal NAALADase in the maintenance of mechanical allodynia induced by carrageenan injection, skin incision and mild thermal injury using 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a specific NAALADase inhibitor, in rats. Mechanical allodynia was induced by injection of 2 mg carrageenan into the paw (carrageenan model), by creating a 1-cm longitudinal skin incision of the plantar aspect of the foot (post-operative model), or by application of thermal stimulation (52.5 degrees C) for 45 s to the hind paw (mild thermal injury model). 2-PMPA was administered intrathecally at the time when the maximum mechanical allodynia occurred. Mechanical allodynia was assessed by the measurement of mechanical threshold using von Frey filaments. The mechanical threshold was measured 5, 15, 30, 60 and 90 min after the drug administration. In the carrageenan model, 100 microg of 2-PMPA attenuated the level of mechanical allodynia. 2-PMPA had no effect on the level of mechanical allodynia in both the post-operative pain model and the mild thermal injury model. These data suggested that the inhibition of spinal NAALADase alleviated mechanical allodynia induced by paw carrageenan injection.

    Topics: Animals; Carboxypeptidases; Carrageenan; Dipeptides; Disease Models, Animal; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Hindlimb; Hyperalgesia; Inflammation; Male; Neural Inhibition; Nociceptors; Organophosphorus Compounds; Pain; Pain Threshold; Pain, Postoperative; Rats; Rats, Sprague-Dawley; Spinal Cord; Synaptic Transmission

2001
Neuroprotection afforded by NAAG and NAALADase inhibition requires glial cells and metabotropic glutamate receptor activation.
    European journal of pharmacology, 2001, Aug-24, Volume: 426, Issue:1-2

    N-acetylated-alpha-linked-acidic-dipeptidase (NAALADase or glutamate carboxypeptidase II) cleaves the neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate (NAA). Previously, NAAG and 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a potent and selective NAALADase inhibitor, were found to be neuroprotective in neuronal/glial co-cultures and in animals following transient middle cerebral artery occlusion. In this report, we examined the involvement of glial cells and metabotropic glutamate (mGlu) receptors in neuroprotection mediated by NAAG and 2-PMPA in an in vitro model of metabolic inhibition. Neuroprotection of neuronal/glial co-cultures by both NAAG and 2-PMPA, against metabolic inhibition, was significantly higher than neuroprotection in the absence of glia. Similarly, (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV), a selective group II mGlu receptor agonist, was less neuroprotective in the absence of glia. Selective group II mGlu receptor antagonists and (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), a non-selective mGlu receptor antagonist, reduced the protection afforded by both NAAG and 2-PMPA when using neuronal/glial co-cultures. In contrast, groups I and III mGlu receptor antagonists did not affect NAAG or 2-PMPA neuroprotection. These results underscore the critical involvement of glia and group II mGlu receptors in NAAG and 2-PMPA-mediated neuroprotection.

    Topics: Animals; Benzoates; Carboxypeptidases; Cells, Cultured; Dipeptides; Excitatory Amino Acid Antagonists; Female; Glutamate Carboxypeptidase II; Glycine; Neuroglia; Neuroprotective Agents; Organophosphorus Compounds; Rats; Receptors, Metabotropic Glutamate

2001
N-acetylaspartylglutamate (NAAG) is the probable mediator of axon-to-glia signaling in the crayfish medial giant nerve fiber.
    Neuroscience, 2001, Volume: 106, Issue:1

    Glial cell hyperpolarization previously has been reported to be induced by high frequency stimulation or glutamate. We now report that it also is produced by the glutamate-containing dipeptide N-acetylaspartylglutamate (NAAG), by its non-hydrolyzable analog beta-NAAG, and by NAAG in the presence of 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a potent inhibitor of the NAAG degradative enzyme glutamate carboxypeptidase II. The results indicate that NAAG mimics the effect of nerve fiber stimulation on the glia. Although glutamate has a similar effect, the other presumed product of NAAG hydrolysis, N-acetylaspartate, is without effect on glial cell membrane potential, as is aspartylglutamate (in the presence of 2-PMPA). The hyperpolarization induced by stimulation, glutamate, NAAG, beta-NAAG, or NAAG plus 2-PMPA is completely blocked by the Group II metabotropic glutamate receptor antagonist (S)-alpha-ethylglutamate but is not altered by antagonists of Group I or III metabotropic glutamate receptors. The N-methyl-D-aspartate receptor antagonist MK801 reduces but does not eliminate the hyperpolarization generated by glutamate, NAAG or stimulation. These results, in combination with those of the preceding paper, are consistent with the premise that NAAG could be the primary axon-to-glia signaling agent. When the unstimulated nerve fiber is treated with cysteate, a glutamate reuptake blocker, there is a small hyperpolarization of the glial cell that can be substantially reduced by pretreatment with 2-PMPA before addition of cysteate. A similar effect of cysteate is seen during a 50 Hz/5 s stimulation. From these results we suggest that glutamate derived from NAAG hydrolysis appears in the periaxonal space under the conditions of these experiments and may contribute to the glial hyperpolarization.

    Topics: Animals; Aspartic Acid; Astacoidea; Axons; Carboxypeptidases; Cell Communication; Cysteic Acid; Dipeptides; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutamate Carboxypeptidase II; Glutamic Acid; Membrane Potentials; N-Methylaspartate; Nervous System; Neuroglia; Organophosphorus Compounds; Receptors, Glutamate; Signal Transduction; Time Factors

2001
Mechanisms for clearance of released N-acetylaspartylglutamate in crayfish nerve fibers: implications for axon-glia signaling.
    Neuroscience, 2001, Volume: 107, Issue:4

    Crayfish nerve fibers incubated with radiolabeled glutamate or glutamine accumulate these substrates and synthesize radioactive N-acetylaspartylglutamate (NAAG). Upon stimulation of the medial giant nerve fiber, NAAG is the primary radioactive metabolite released. Since NAAG activates a glial hyperpolarization comparable to that initiated by glutamate or axonal stimulation through the same receptor, we have proposed that it is the likely mediator of interactions between the medial giant axon and its periaxonal glia. This manuscript reports investigations of possible mechanisms for termination of NAAG-signaling activity. N-acetylaspartyl-[(3)H]glutamate was not accumulated from the bath saline by unstimulated crayfish giant axons or their associated glia during a 30-min incubation. Stimulation of the central nerve cord at 50 Hz during the last minute of the incubation dramatically increased the levels of radiolabeled glutamate, NAAG, and glutamine in the medial giant axon and its associated glia. These results indicate that stimulation-sensitive peptide hydrolysis and metabolic recycling of the radiolabeled glutamate occurred. There was a beta-NAAG-, quisqualate- and 2-(phosphonomethyl)-pentanedioic acid-inhibitable glutamate carboxypeptidase II activity in the membrane fraction of central nerve fibers, but not in axonal or glial cytoplasmic fractions. Inactivation of this enzyme by 2-(phosphonomethyl)-pentanedioic acid or inhibition of N-methyl-D-aspartate (NMDA) receptors by MK801 reduced the glial hyperpolarization activated by high-frequency stimulation. These results indicate that axon-to-glia signaling is terminated by NAAG hydrolysis and that the glutamate formed contributes to the glial electrical response in part via activation of NMDA receptors. Both NAAG release and an increase in glutamate carboxypeptidase II activity appear to be induced by nerve stimulation.

    Topics: Animals; Astacoidea; Carboxypeptidases; Cell Communication; Cell Membrane; Cytoplasm; Dipeptides; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Extracellular Space; Glutamate Carboxypeptidase II; Nerve Fibers; Neuroglia; Organophosphorus Compounds; Signal Transduction; Tritium

2001
Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury.
    Nature medicine, 1999, Volume: 5, Issue:12

    We describe here a new strategy for the treatment of stroke, through the inhibition of NAALADase (N-acetylated-alpha-linked-acidic dipeptidase), an enzyme responsible for the hydrolysis of the neuropeptide NAAG (N-acetyl-aspartyl-glutamate) to N-acetyl-aspartate and glutamate. We demonstrate that the newly described NAALADase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) robustly protects against ischemic injury in a neuronal culture model of stroke and in rats after transient middle cerebral artery occlusion. Consistent with inhibition of NAALADase, we show that 2-PMPA increases NAAG and attenuates the ischemia-induced rise in glutamate. Both effects could contribute to neuroprotection. These data indicate that NAALADase inhibition may have use in neurological disorders in which excessive excitatory amino acid transmission is pathogenic.

    Topics: Animals; Brain Ischemia; Carboxypeptidases; Culture Techniques; Dipeptides; Disease Models, Animal; Drug Tolerance; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Glutamic Acid; Ischemic Attack, Transient; Mice; Mice, Inbred ICR; Neuroprotective Agents; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Stroke

1999
Blockade of NAALADase: a novel neuroprotective strategy based on limiting glutamate and elevating NAAG.
    Annals of the New York Academy of Sciences, 1999, Volume: 890

    Excessive glutamate receptor activation is thought to be involved in the neuronal injury caused by stroke. Based on the hypothesis that N-acetyl-aspartyl-glutamate (NAAG) is a modulatory neurotransmitter or storage form of glutamate, we have pursued a novel strategy of therapeutic intervention, blockade of N-acetylated alpha-linked acidic dipeptidase (NAALADase), the enzyme that hydrolyzes NAAG to liberate glutamate. Using the suture model of transient middle cerebral artery occlusion (MCAO) in rats, the prototype NAALADase inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) dramatically reduced extracellular glutamate accumulation measured by microdialysis both during a 2-hour occlusion and during reperfusion, consistent with an effect on glutamate supply. During reperfusion, the decrease in glutamate was accompanied by an equimolar, reciprocal rise in extracellular NAAG. NAALADase inhibition may prove to be a well tolerated therapy for cerebral ischemia. In addition, NAALADase inhibitors should prove to be important tools in understanding the physiological role of NAAG in the brain.

    Topics: Animals; Carboxypeptidases; Dipeptides; Glutamate Carboxypeptidase II; Glutamic Acid; Infarction, Middle Cerebral Artery; Neuroprotective Agents; Organophosphorus Compounds; Rats; Reperfusion Injury

1999
Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase.
    Journal of medicinal chemistry, 1996, Jan-19, Volume: 39, Issue:2

    A series of substituted phosphonate derivatives were designed and synthesized in order to study the ability of these compounds to inhibit the neuropeptidase N-acetylated alpha-linked acidic dipeptidase (NAALADase). The molecules were shown to act as inhibitors of the enzyme, with the most potent (compound 3) having a Ki of 0.275 nM. The potency of this compound is more than 1000 times greater than that of previously reported inhibitors of the enzyme. NAALADase is responsible for the catabolism of the abundant neuropeptide N-acetyl-aspartylglutamate (NAAG) into N-acetylaspartate and glutamate. NAAG has been proposed to be a neurotransmitter at a subpopulation of glutamate receptors; alternatively, NAAG has been suggested to act as a storage form of synaptic glutamate. As a result, inhibition of NAALADase may show utility as a therapeutic intervention in diseases in which altered levels of glutamate are thought to be involved.

    Topics: Acetylation; Animals; Central Nervous System; Dipeptidases; Dipeptides; Drug Design; Enzyme Inhibitors; Glutamate Carboxypeptidase II; Hydrogen-Ion Concentration; Neuropeptides; Rats; Rats, Sprague-Dawley

1996