pf-00299804 and ceritinib

pf-00299804 has been researched along with ceritinib* in 2 studies

Other Studies

2 other study(ies) available for pf-00299804 and ceritinib

ArticleYear
To quantify the small-molecule kinase inhibitors ceritinib, dacomitinib, lorlatinib, and nintedanib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry.
    Journal of pharmaceutical and biomedical analysis, 2021, Jan-30, Volume: 193

    Multiple small-molecule kinase inhibitors with specific molecular targets have recently been developed for the treatment of cancer. This article reports the development and validation of an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method to simultaneously analyse the small-molecule kinase inhibitors dacomitinib, ceritinib, lorlatinib, and nintedanib in human plasma. For chromatographic analyte separation, an Acquity UPLC® BEH C18 column 1.7 μm, 50 mm x 2.1 mm was used with a binary gradient of pure water/formic acid/ammonium formate (100:0.1:0.02, v/v/v) and methanol/formic acid (100:0.1, v/v). Calibration curves for all small-molecule kinase inhibitors were 5.00-500 ng/mL. Validation of this method met all requirements of the Food and Drug administration. Additionally, clinical applicability was demonstrated by quantification of multiple samples from a pharmacokinetic study in patients with lung cancer.

    Topics: Aminopyridines; Chromatography, High Pressure Liquid; Chromatography, Liquid; Humans; Indoles; Lactams; Lactams, Macrocyclic; Pyrazoles; Pyrimidines; Quinazolinones; Reproducibility of Results; Sulfones; Tandem Mass Spectrometry

2021
An Liquid Chromatography-Tandem Mass Spectrometry Method for the Simultaneous Determination of Afatinib, Alectinib, Ceritinib, Crizotinib, Dacomitinib, Erlotinib, Gefitinib, and Osimertinib in Human Serum.
    Therapeutic drug monitoring, 2021, 12-01, Volume: 43, Issue:6

    Routine therapeutic drug monitoring is a promising approach for the rational use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors. The purpose of this study was to develop and validate a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous determination of 5 EGFR-TKIs (afatinib, dacomitinib, erlotinib, gefitinib, and osimertinib) and 3 ALK inhibitors (alectinib, ceritinib, and crizotinib).. A 100-mL aliquot of serum was diluted with 100 μL of 1% aqueous ammonia containing internal standards and then purified using the supported liquid extraction method. LC-MS/MS was conducted in positive ionization mode, and the method was validated according to published guidelines.. Calibration curves were linear across concentration ranges examined. The intra- and interassay accuracies were 90.7%-110.7% and 94.7%-107.6%, respectively. All intra- and interassay imprecision values were ≤10.1%. The EGFR-TKIs and ALK inhibitors examined in this study, except osimertinib, which could be stored on ice for at least 5 hours, were stable at room temperature for 3 hours. For the internal standard-normalized matrix factors, the mean recovery and percent coefficient of variation values ranged between 54%-112% and 1.7%-11.7%, respectively. This method successfully determined serum concentrations of afatinib, alectinib, erlotinib, gefitinib, and osimertinib in clinical samples. Serum levels of kinase inhibitors consistently reflected those reported in previous studies.. An LC-MS/MS method suitable for the simultaneous determination of 5 EGFR-TKIs and 3 ALK inhibitors in serum was developed and validated. The newly developed method enabled the determination of 5 of 8 target drugs examined in clinical samples. However, a large number of clinical samples need to be analyzed to verify the usefulness of the method.

    Topics: Acrylamides; Afatinib; Aniline Compounds; Carbazoles; Chromatography, Liquid; Crizotinib; Erlotinib Hydrochloride; Gefitinib; Humans; Lung Neoplasms; Piperidines; Protein Kinase Inhibitors; Pyrimidines; Quinazolinones; Sulfones; Tandem Mass Spectrometry

2021