perylenequinone and cercosporin

perylenequinone has been researched along with cercosporin* in 3 studies

Reviews

1 review(s) available for perylenequinone and cercosporin

ArticleYear
Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.
    Antioxidants & redox signaling, 2013, Sep-20, Volume: 19, Issue:9

    Reactive oxygen species (ROS) play multiple roles in interactions between plants and microbes, both as host defense mechanisms and as mediators of pathogenic and symbiotic associations. One source of ROS in these interactions are photoactivated, ROS-generating perylenequinone pigments produced via polyketide metabolic pathways in plant-associated fungi. These natural products, including cercosporin, elsinochromes, hypocrellins, and calphostin C, are being utilized as medicinal agents, enzyme inhibitors, and in tumor therapy, but in nature, they play a role in the establishment of pathogenic associations between fungi and their plant hosts.. Photoactivated perylenequinones are photosensitizers that use light energy to form singlet oxygen (¹O₂) and free radical oxygen species which damage cellular components based on localization of the perylenequinone molecule. Production of perylenequinones during infection commonly results in lipid peroxidation and membrane damage, leading to leakage of nutrients from cells into the intercellular spaces colonized by the pathogen. Perylenequinones show almost universal toxicity against organisms, including plants, mice, bacteria, and most fungi. The producing fungi are resistant, however, and serve as models for understanding resistance mechanisms.. Studies of resistance mechanisms by perylenequinone-producing fungi such as Cercospora species are leading to an understanding of cellular resistance to ¹O₂ and oxidative stress. Recent studies show commonalities between resistance mechanisms in these fungi with extensive studies of ¹O₂ and oxidative stress responses in photosynthetic organisms.. Such studies hold promise both for improved medical use and for engineering crop plants for disease resistance.

    Topics: Apoptosis; Host-Pathogen Interactions; Necrosis; Oxidation-Reduction; Perylene; Photosensitizing Agents; Plant Diseases; Plants; Quinones; Reactive Oxygen Species

2013

Other Studies

2 other study(ies) available for perylenequinone and cercosporin

ArticleYear
Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi.
    Environmental microbiology, 2019, Volume: 21, Issue:3

    Perylenequinones are a family of structurally related polyketide fungal toxins with nearly universal toxicity. These photosensitizing compounds absorb light energy which enables them to generate reactive oxygen species that damage host cells. This potent mechanism serves as an effective weapon for plant pathogens in disease or niche establishment. The sugar beet pathogen Cercospora beticola secretes the perylenequinone cercosporin during infection. We have shown recently that the cercosporin toxin biosynthesis (CTB) gene cluster is present in several other phytopathogenic fungi, prompting the search for biosynthetic gene clusters (BGCs) of structurally similar perylenequinones in other fungi. Here, we report the identification of the elsinochrome and phleichrome BGCs of Elsinoë fawcettii and Cladosporium phlei, respectively, based on gene cluster conservation with the CTB and hypocrellin BGCs. Furthermore, we show that previously reported BGCs for elsinochrome and phleichrome are involved in melanin production. Phylogenetic analysis of the corresponding melanin polyketide synthases (PKSs) and alignment of melanin BGCs revealed high conservation between the established and newly identified C. beticola, E. fawcettii and C. phlei melanin BGCs. Mutagenesis of the identified perylenequinone and melanin PKSs in C. beticola and E. fawcettii coupled with mass spectrometric metabolite analyses confirmed their roles in toxin and melanin production.

    Topics: Ascomycota; Biosynthetic Pathways; Cladosporium; Genes, Fungal; Melanins; Multigene Family; Mycotoxins; Perylene; Phylogeny; Plants; Polyketide Synthases; Quinones

2019
Perylenequinone natural products: evolution of the total synthesis of cercosporin.
    The Journal of organic chemistry, 2010, Jan-01, Volume: 75, Issue:1

    The evolution of the first total synthesis of perylenequinone cercosporin is described. The key features developed during these efforts include a biscuprate epoxide alkylation, installation of the methylidene acetal, palladium-catalyzed O-arylation, and C3,C3'-decarbonylation. Due to the rapid atropisomerization of the helical axis of cercosporin (at 37 degrees C), the sequencing of these transformations was critical. To this end, the developed protocol enabled the formation of a key advanced intermediate on preparative scale absent any atropisomerization. Furthermore, the O-arylation proved to be general, and the strategy was used in an improved synthesis of a helical chiral perylenequinone structure.

    Topics: Biological Products; Catalysis; Molecular Conformation; Palladium; Perylene; Quinones; Stereoisomerism; Structure-Activity Relationship

2010