perovskite has been researched along with olivine* in 2 studies
2 other study(ies) available for perovskite and olivine
Article | Year |
---|---|
Crystal structures of (Mg1-x,Fe(x))SiO3 postperovskite at high pressures.
X-ray diffraction experiments on postperovskite (ppv) with compositions (Mg(0.9)Fe(0.1))SiO(3) and (Mg(0.6)Fe(0.4))SiO(3) at Earth core-mantle boundary pressures reveal different crystal structures. The former adopts the CaIrO(3)-type structure with space group Cmcm, whereas the latter crystallizes in a structure with the Pmcm (Pmma) space group. The latter has a significantly higher density (ρ = 6.119(1) g/cm(3)) than the former (ρ = 5.694(8) g/cm(3)) due to both the larger amount of iron and the smaller ionic radius of Fe(2+) as a result of an electronic spin transition observed by X-ray emission spectroscopy (XES). The smaller ionic radius for low-spin compared to high-spin Fe(2+) also leads to an ordered cation distribution in the M1 and M2 crystallographic sites of the higher density ppv structure. Rietveld structure refinement indicates that approximately 70% of the total Fe(2+) in that phase occupies the M2 site. XES results indicate a loss of 70% of the unpaired electronic spins consistent with a low spin M2 site and high spin M1 site. First-principles calculations of the magnetic ordering confirm that Pmcm with a two-site model is energetically more favorable at high pressure, and predict that the ordered structure is anisotropic in its electrical and elastic properties. These results suggest that interpretations of seismic structure in the deep mantle need to treat a broader range of mineral structures than previously considered. Topics: Calcium Compounds; Crystallography; Geology; Iron Compounds; Magnesium Compounds; Models, Molecular; Oxides; Pressure; Silicates; Spectrometry, X-Ray Emission; Titanium; X-Ray Diffraction | 2012 |
Natural (Mg,Fe)SiO3-ilmenite and -perovskite in the Tenham meteorite.
The minerals (Mg,Fe)SiO3-ilmenite and -perovskite were identified in the shock-induced veins in the Tenham chondritic meteorite. Both phases are inferred to have transformed from pyroxene at high pressures and temperatures by shock metamorphism. Columnar-shaped ilmenite grains, one of two types of morphologies, have a topotaxial relationship with neighboring pyroxene grains, indicating shear transformation. Granular-shaped perovskite grains showed a diffraction pattern consistent with orthorhombic perovskite, but these grains were not stable under the electron beam irradiation and became amorphous. The higher iron concentration in both phases compared with those experimentally reported may suggest their metastable transition from enstatite because of shock compression. Topics: Calcium Compounds; Iron; Iron Compounds; Magnesium Compounds; Meteoroids; Microscopy, Electron; Oxides; Pressure; Silicates; Temperature; Titanium | 1997 |