peridinin and diadinoxanthin

peridinin has been researched along with diadinoxanthin* in 3 studies

Other Studies

3 other study(ies) available for peridinin and diadinoxanthin

ArticleYear
Simultaneous effect of temperature and irradiance on growth and okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum.
    Toxins, 2014, Jan-03, Volume: 6, Issue:1

    Benthic marine dioflagellate microalgae belonging to the genus Prorocentrum are a major source of okadaic acid (OA), OA analogues and polyketides. However, dinoflagellates produce these valuable toxins and bioactives in tiny quantities, and they grow slowly compared to other commercially used microalgae. This hinders evaluation in possible large-scale applications. The careful selection of producer species is therefore crucial for success in a hypothetical scale-up of culture, as are appropriate environmental conditions for optimal growth. A clone of the marine toxic dinoflagellate P. belizeanum was studied in vitro to evaluate its capacities to grow and produce OA as an indicator of general polyketide toxin production under the simultaneous influence of temperature (T) and irradiance (I0). Three temperatures and four irradiance levels were tested (18, 25 and 28 °C; 20, 40, 80 and 120 µE·(m-2)·s(-1)), and the response variables measured were concentration of cells, maximum photochemical yield of photosystem II (PSII), pigments and OA. Experiments were conducted in T-flasks, since their parallelepipedal geometry proved ideal to ensure optically thin cultures, which are essential for reliable modeling of growth-irradiance curves. The net maximum specific growth rate (µ(m)) was 0.204 day(-1) at 25 °C and 40 µE·(m-2)·s(-1). Photo-inhibition was observed at I0 > 40 μEm(-2)s(-1), leading to culture death at 120 µE·m(-2)·s(-1) and 28 °C. Cells at I0 ≥ 80 µE·m(-2)·s(-1) were photoinhibited irrespective of the temperature assayed. A mechanistic model for µ(m)-I0 curves and another empirical model for relating µ(m)-T satisfactorily interpreted the growth kinetics obtained. ANOVA for responses of PSII maximum photochemical yield and pigment profile has demonstrated that P. belizeanum is extremely light sensitive. The pool of photoprotective pigments (diadinoxanthin and dinoxanthin) and peridinin was not able to regulate the excessive light-absorption at high I0-T. OA synthesis in cells was decoupled from optimal growth conditions, as OA overproduction was observed at high temperatures and when both temperature and irradiance were low. T-flask culture observations were consistent with preliminary assays outdoors.

    Topics: beta Carotene; Carotenoids; Chlorophyll; Chromatography, High Pressure Liquid; Dinoflagellida; Light; Models, Theoretical; Okadaic Acid; Photobioreactors; Temperature; Xanthophylls

2014
The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont.
    The Journal of experimental biology, 2013, Jul-15, Volume: 216, Issue:Pt 14

    The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l(-1)) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ(15)N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions.

    Topics: Ammonium Compounds; Analysis of Variance; Animals; Anthozoa; beta Carotene; Calcification, Physiologic; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Fluorescence; Hot Temperature; Indian Ocean; Nitrogen; Photosynthesis; Stress, Physiological; Symbiosis; Xanthophylls

2013
Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoid diadinoxanthin and peridinin (C37) from neoxanthin.
    The Biochemical journal, 1981, Oct-01, Volume: 199, Issue:1

    Intact cells of the alga Amphidinium carterae (Dinophyceae), and a cell-free system prepared from it, incorporated 14C, 3H-labelled mevalonate into lycopene, beta, beta-carotene, zeaxanthin, neoxanthin, diadinoxanthin and peridinin. The 14C/3H ratios of zeaxanthin, neoxanthin and diadinoxanthin formed from (2RS,3R)-[2-14C,2-3H2]mevalonate show that a hydrogen atom from C-2 of mevalonate is retained in the allene at C-8, and also at C-12 of peridinin. (3R,4R + 3S,4S)-[2-14C,4-3H1]Mevalonate gave 14C/3H ratios in peridinin which show that C-14 is lost. The three carbon atoms excised during the formation of the C37 carotenoid peridinin are C-13, C-14 and C-20 of neoxanthin.

    Topics: Acetylene; Carotenoids; Cell-Free System; Chemical Phenomena; Chemistry; Eukaryota; Mevalonic Acid; Molecular Conformation; Xanthophylls

1981