peridinin has been researched along with chlorophyll-c* in 2 studies
2 other study(ies) available for peridinin and chlorophyll-c
Article | Year |
---|---|
Spectroscopic properties of the Chlorophyll a-Chlorophyll c 2-Peridinin-Protein-Complex (acpPC) from the coral symbiotic dinoflagellate Symbiodinium.
Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a-chlorophyll c 2-peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions. Topics: Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Light-Harvesting Protein Complexes | 2014 |
Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate Symbiodinium sp.
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c(2)-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences. Topics: Amino Acid Sequence; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Genes, Protozoan; Light-Harvesting Protein Complexes; Molecular Sequence Data; Phylogeny; Protozoan Proteins; Sequence Alignment | 2012 |