perhexiline has been researched along with toremifene in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Byun, SY; Choi, I; Jeon, S; Kim, S; Ko, M; Lee, J; Park, S; Shum, D | 1 |
Cammue, BP; Chaltin, P; De Brucker, K; Delattin, N; Marchand, A; Meert, E; Thevissen, K; Vandamme, K | 1 |
1 review(s) available for perhexiline and toremifene
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for perhexiline and toremifene
Article | Year |
---|---|
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs.
Topics: Animals; Anti-Inflammatory Agents; Antiviral Agents; Betacoronavirus; Cell Line; Chlorocebus aethiops; Coronavirus Infections; COVID-19; Drug Evaluation, Preclinical; Drug Repositioning; Humans; Niclosamide; Pandemics; Pneumonia, Viral; Pregnenediones; SARS-CoV-2; Vero Cells | 2020 |
Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms.
Topics: Amphotericin B; Androstenes; Animals; Antifungal Agents; Biofilms; Caenorhabditis elegans; Candida albicans; Caspofungin; Drug Repositioning; Drug Synergism; Echinocandins; Lipopeptides; Microbial Sensitivity Tests; Osteoblasts; Perhexiline; Toremifene | 2014 |